MongoDB aggregation pipelines made easy. Joins, grouping, counting and much more...
Project description
Overview
Monggregate is a library that aims at simplifying usage of MongoDB aggregation pipelines in Python. It is based on MongoDB official Python driver, pymongo and on pydantic.
Features
- Provides an Object Oriented Programming (OOP) interface to the aggregation pipeline.
- Allows you to focus on your requirements rather than MongoDB syntax.
- Integrates all the MongoDB documentation and allows you to quickly refer to it without having to navigate to the website.
- Enables autocompletion on the various MongoDB features.
- Offers a pandas-style way to chain operations on data.
Requirements
This package requires python > 3.10, pydantic > 1.8.0
Installation
The repo is now available on PyPI:
pip install monggregate
Usage
The below examples reference the MongoDB sample_mflix database
Basic Pipeline usage
import os
from dotenv import load_dotenv
import pymongo
from monggregate import Pipeline, S
# Creating connexion string securely
# You need to create a .env file with your password
load_dotenv(verbose=True)
PWD = os.environ["MONGODB_PASSWORD"]
MONGODB_URI = f"mongodb+srv://dev:{PWD}@myserver.xciie.mongodb.net/?retryWrites=true&w=majority"
# Connect to your MongoDB cluster:
client = pymongo.MongoClient(MONGODB_URI)
# Get a reference to the "sample_mflix" database:
db = client["sample_mflix"]
# Creating the pipeline
pipeline = Pipeline()
# The below pipeline will return the most recent movie with the title "A Star is Born"
pipeline.match(
title="A Star Is Born"
).sort(
by="year"
).limit(
value=1
)
# Executing the pipeline
curosr = db["movies"].aggregate(pipeline.export())
# Printing the results
results = list(curosr)
print(results)
Advanced Usage, with MongoDB Operators
import os
from dotenv import load_dotenv
import pymongo
from monggregate import Pipeline, S
# Creating connexion string securely
load_dotenv(verbose=True)
PWD = os.environ["MONGODB_PASSWORD"]
MONGODB_URI = f"mongodb+srv://dev:{PWD}@myserver.xciie.mongodb.net/?retryWrites=true&w=majority"
# Connect to your MongoDB cluster:
client = pymongo.MongoClient(MONGODB_URI)
# Get a reference to the "sample_mflix" database:
db = client["sample_mflix"]
# Creating the pipeline
pipeline = Pipeline()
pipeline.match(
year=S.type_("number") # Filtering out documents where the year field is not a number
).group(
by="year",
query = {
"movie_count":S.sum(1), # Aggregating the movies per year
"movie_titles":S.push("$title")
}
).sort(
by="_id",
descending=True
).limit(10)
# Executing the pipeline
cursor = db["movies"].aggregate(pipeline.export())
# Printing the results
results = list(cursor)
print(results)
Even More Advanced Usage with Expressions
import os
from dotenv import load_dotenv
import pymongo
from monggregate import Pipeline, S, Expression
# Creating connexion string securely
load_dotenv(verbose=True)
PWD = os.environ["MONGODB_PASSWORD"]
MONGODB_URI = f"mongodb+srv://dev:{PWD}@myserver.xciie.mongodb.net/?retryWrites=true&w=majority"
# Connect to your MongoDB cluster:
client = pymongo.MongoClient(MONGODB_URI)
# Get a reference to the "sample_mflix" database:
db = client["sample_mflix"]
# Using expressions
comments_count = Expression.field("comments").size()
# Creating the pipeline
pipeline = Pipeline()
pipeline.lookup(
right="comments",
right_on="movie_id",
left_on="_id",
name="comments"
).add_fields(
comments_count=comments_count
).match(
expression=comments_count>2
).limit(1)
# Executing the pipeline
cursor = db["movies"].aggregate(pipeline.export())
# Printing the results
results = list(cursor)
print(results)
Going Further
- Check out the full documentation for more examples.
- Check out this medium article.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
monggregate-0.21.0.tar.gz
(118.4 kB
view details)
Built Distribution
monggregate-0.21.0-py3-none-any.whl
(170.0 kB
view details)
File details
Details for the file monggregate-0.21.0.tar.gz
.
File metadata
- Download URL: monggregate-0.21.0.tar.gz
- Upload date:
- Size: 118.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 84abdc28b211f609b0c2c8b6c76d6753b96269c274b178aa3202a61b086eccfb |
|
MD5 | d6f5b915a7c8caf1feef2e547ea64ab8 |
|
BLAKE2b-256 | c19713f59dbcba227eea1b10f487a3400c005fda859e56b622255f30dac92eb1 |
File details
Details for the file monggregate-0.21.0-py3-none-any.whl
.
File metadata
- Download URL: monggregate-0.21.0-py3-none-any.whl
- Upload date:
- Size: 170.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61622d2af60558c313daba8076c299d8e892a0825c6ad043ad65e771b0f20065 |
|
MD5 | 25f5778f1c79821898625be5167f73ab |
|
BLAKE2b-256 | 475fe5962f3239ddb7a221375f768ddb5993533feec161d44f56e4cb7b865859 |