Skip to main content

MongoDB aggregation pipelines made easy. Joins, grouping, counting and much more...

Project description

Overview

Monggregate is a library that aims at simplifying usage of MongoDB aggregation pipelines in Python. It is based on MongoDB official Python driver, pymongo and on pydantic.

Features

  • Provides an Object Oriented Programming (OOP) interface to the aggregation pipeline.
  • Allows you to focus on your requirements rather than MongoDB syntax.
  • Integrates all the MongoDB documentation and allows you to quickly refer to it without having to navigate to the website.
  • Enables autocompletion on the various MongoDB features.
  • Offers a pandas-style way to chain operations on data.

Requirements

This package requires python > 3.10, pydantic > 1.8.0

Installation

The repo is now available on PyPI:

pip install monggregate

Usage

The below examples reference the MongoDB sample_mflix database

Basic Pipeline usage

import os

from dotenv import load_dotenv 
import pymongo
from monggregate import Pipeline, S

# Creating connexion string securely
# You need to create a .env file with your password
load_dotenv(verbose=True)
PWD = os.environ["MONGODB_PASSWORD"] 

MONGODB_URI = f"mongodb+srv://dev:{PWD}@myserver.xciie.mongodb.net/?retryWrites=true&w=majority"

# Connect to your MongoDB cluster:
client = pymongo.MongoClient(MONGODB_URI)

# Get a reference to the "sample_mflix" database:
db = client["sample_mflix"]

# Creating the pipeline
pipeline = Pipeline()

# The below pipeline will return the most recent movie with the title "A Star is Born"
pipeline.match(
    title="A Star Is Born"
).sort(
    by="year"
).limit(
    value=1
)

# Executing the pipeline
curosr = db["movies"].aggregate(pipeline.export())

# Printing the results
results = list(curosr)
print(results)

Advanced Usage, with MongoDB Operators

import os

from dotenv import load_dotenv 
import pymongo
from monggregate import Pipeline, S


# Creating connexion string securely
load_dotenv(verbose=True)
PWD = os.environ["MONGODB_PASSWORD"]
MONGODB_URI = f"mongodb+srv://dev:{PWD}@myserver.xciie.mongodb.net/?retryWrites=true&w=majority"


# Connect to your MongoDB cluster:
client = pymongo.MongoClient(MONGODB_URI)

# Get a reference to the "sample_mflix" database:
db = client["sample_mflix"]


# Creating the pipeline
pipeline = Pipeline()
pipeline.match(
    year=S.type_("number") # Filtering out documents where the year field is not a number
).group(
    by="year",
    query = {
        "movie_count":S.sum(1), # Aggregating the movies per year
        "movie_titles":S.push("$title")
    }
).sort(
    by="_id",
    descending=True
).limit(10)

# Executing the pipeline
cursor = db["movies"].aggregate(pipeline.export())

# Printing the results
results = list(cursor)
print(results)

Even More Advanced Usage with Expressions

import os

from dotenv import load_dotenv 
import pymongo
from monggregate import Pipeline, S, Expression

# Creating connexion string securely
load_dotenv(verbose=True)
PWD = os.environ["MONGODB_PASSWORD"]
MONGODB_URI = f"mongodb+srv://dev:{PWD}@myserver.xciie.mongodb.net/?retryWrites=true&w=majority"


# Connect to your MongoDB cluster:
client = pymongo.MongoClient(MONGODB_URI)

# Get a reference to the "sample_mflix" database:
db = client["sample_mflix"]

# Using expressions
comments_count = Expression.field("comments").size()


# Creating the pipeline
pipeline = Pipeline()
pipeline.lookup(
    right="comments",
    right_on="movie_id",
    left_on="_id",
    name="comments"
).add_fields(
    comments_count=comments_count
).match(
    expression=comments_count>2
).limit(1)

# Executing the pipeline
cursor = db["movies"].aggregate(pipeline.export())

# Printing the results
results = list(cursor)
print(results)

Going Further

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monggregate-0.19.1.tar.gz (113.0 kB view details)

Uploaded Source

Built Distribution

monggregate-0.19.1-py3-none-any.whl (162.3 kB view details)

Uploaded Python 3

File details

Details for the file monggregate-0.19.1.tar.gz.

File metadata

  • Download URL: monggregate-0.19.1.tar.gz
  • Upload date:
  • Size: 113.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for monggregate-0.19.1.tar.gz
Algorithm Hash digest
SHA256 5c300f9a4bfc81f32bbaf5b47eab0f03feb06e096d73bc2405b1e61011dffbf8
MD5 d4ff9b23169ca816930d787746017939
BLAKE2b-256 5a2943014ff62135ef8c41ceaeace29f8399fea3bfb9c23ee306473c30dc2289

See more details on using hashes here.

File details

Details for the file monggregate-0.19.1-py3-none-any.whl.

File metadata

  • Download URL: monggregate-0.19.1-py3-none-any.whl
  • Upload date:
  • Size: 162.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for monggregate-0.19.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8ef5b2cc80fe7876eb5198c0f0273a357f8779da26ec96162da385ecdea12423
MD5 33eff568fa3cb1e296e4e591c3305ac7
BLAKE2b-256 d4f396039cafa74211d559f048743fa4cb532753a3b75c3e5c1d51b2613b24f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page