Skip to main content

Python MongoDB CRUD

Project description

Python Package for MongoDB CRUD

For use:

  • Install package with PIP;
  • Import from mongocrud Mongocrud;
  • Configure database settings (location, collection, port...);
  • Call object CRUD operations;

Example:

  • For INSERT operation in database:
from mongocrud import MongoCRUD, ObjectId
from datetime import datetime

dbclients = MongoCRUD("mongodb://localhost","mongoteste1")

dbclients.insert("clients", {"_id": "12345", "name":"Anderson 1", "dtupdate": datetime.now()})
dbclients.insert("clients", {"_id": 15 , "name":"Anderson 2", "dtupdate": datetime.now()})
dbclients.insert("clients", {"name":"Anderson 3", "dtupdate": datetime.now()})
dbclients.insert("clients", {"name":"Anderson 4", "dtupdate": datetime.now()})
dbclients.insert("clients", {"name":"Anderson 5", "dtupdate": datetime.now()})
#12 bits/24 bits info as _id
dbclients.insert("clients", {"_id": ObjectId(b'000000000001'), "name":"Anderson 6", "dtupdate": datetime.now()})
  • For SELECT operation on database (using orderby and direction for sort information):
from mongocrud import MongoCRUD
from datetime import datetime

dbclients = MongoCRUD("mongodb://localhost","mongoteste1")
clients_ordered = dbclients.select("clients", orderby="dtupdate", direction=1)

for client in clients_ordered: print(client)
  • For SELECT BY _id (select if using ObjectId on _id):
from mongocrud import MongoCRUD
from datetime import datetime

dbclients = MongoCRUD("mongodb://localhost","mongoteste1")

clients = dbclients.select_by_id("clients", "12345", is_objectid=False)
print(clients)
clients = dbclients.select_by_id("clients", 15, is_objectid=False)
print(clients)
clients = dbclients.select_by_id("clients", "64495d9c140992e498f5fcb2", is_objectid=True)
print(clients)
  • For DELETE query in database:
from mongocrud import MongoCRUD
from datetime import datetime

dbclients = MongoCRUD("mongodb://localhost","mongoteste1")

items = dbclients.delete("clients", {"name": "Anderson 2"})
print("QTD items deleted => ", items)
  • For DELETE BY _id:
from mongocrud import MongoCRUD, ObjectId
from datetime import datetime

dbclients = MongoCRUD("mongodb://localhost","mongoteste1")

items = dbclients.delete_by_id("clients", "12345", is_objectid=False)
print("QTD items deleted => ", items)

items = dbclients.delete_by_id("clients", "64495d9c140992e498f5fcb1", is_objectid=True)
print("QTD items deleted => ", items)

items = dbclients.delete_by_id("clients", ObjectId(b"000000000001"), is_objectid=False)
print("QTD items deleted => ", items)
  • for UPDATE row:
from mongocrud import MongoCRUD
from datetime import datetime

dbclients = MongoCRUD("mongodb://localhost","mongoteste1")

dbclients.update_one("clients", "12345", {"name": "teste1", "dtupdate": datetime.now()}, is_objectid=False)
dbclients.update_one("clients", "64496373fe1ef021a556b446", {"name": "teste2", "dtupdate": datetime.now()}, is_objectid=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mongo_malbizer-1.0.1.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

mongo_malbizer-1.0.1-py3-none-any.whl (3.1 kB view details)

Uploaded Python 3

File details

Details for the file mongo_malbizer-1.0.1.tar.gz.

File metadata

  • Download URL: mongo_malbizer-1.0.1.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.6

File hashes

Hashes for mongo_malbizer-1.0.1.tar.gz
Algorithm Hash digest
SHA256 ff99563587056142cd5425af66d62a47e00c18a642c90d87eeab2126d8382836
MD5 224b0c2fb367ffb9ef6280ae0eb5ec17
BLAKE2b-256 804e91fc6389d5858197596a6e0b396ebfe98a2eb7967221aad5d39516cc2b5a

See more details on using hashes here.

File details

Details for the file mongo_malbizer-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for mongo_malbizer-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 35b109b4c150737a5793dabcc4298c2ee2fbe48595e4a077b0dfa76fb4abccb7
MD5 23c85c2799ac864b5a2d709b05cf528f
BLAKE2b-256 8d9c2aaac01353b4243ee9eb0cafc274f5f2cbf17d49a96fed4b1b8a45ec7f62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page