Skip to main content

A Python decorator library for caching function results in MongoDB

Project description

https://badge.fury.io/py/mongo-memoize.png https://travis-ci.org/ikuyamada/mongo-memoize.png?branch=master

A Python decorator library for instantly caching function results in MongoDB.

Basic Usage

from mongo_memoize import memoize

@memoize()
def func():
    ...

Customization

You can specify custom serializer and key_generator. serializer is used to serialize function results in order to convert them into formats that can be stored in MongoDB. key_generator generates a cache key from the function arguments. PickleSerializer and PickleMD5KeyGenerator are used by default.

from mongo_memoize import memoize, NoopSerializer, PickleMD5KeyGenerator

@memoize(serializer=NoopSerializer(), key_generator=PickleMD5KeyGenerator())
def func():
    ...

Using Capped Collection

Capped collection is a MongoDB feature which allows to limit the maximum size of the collection. By setting capped=True, a capped collection is created automatically.

from mongo_memoize import memoize

@memoize(capped=True, capped_size=100000000)
def func():
    ...

Project details


Release history Release notifications

This version
History Node

0.0.4

History Node

0.0.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
mongo-memoize-0.0.4.tar.gz (4.3 kB) Copy SHA256 hash SHA256 Source None Nov 9, 2014

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page