Skip to main content

Mongo ODM, based on pydantic and pymongo

Project description

mongodantic

Install

Install using pip...

pip install mongodantic

##settings

in your main file application

from mongodantic import connect

connection_str = '<your connection url>'
db_name = '<name of database>'

# basic
connect(connection_str, db_name, max_pool_size=100)

# if u use ssl
connect(connection_str, db_name, max_pool_size=100, ssl=True, ssl_cert_path='<path to cert>')

# extra params
server_selection_timeout_ms = 50000 # pymongo serverSelectionTimeoutMS
connect_timeout_ms = 50000 # pymongo connectTimeoutMS
socket_timeout_ms = 50000 # pymongo socketTimeoutMS

Declare models

from mongodantic.models import MongoModel

class Banner(MongoModel):
    banner_id: str
    name: str
    utm: dict

# if you need take an existing collection, you must reimplement set_collection_name method like that
class Banner(MongoModel):
    ...

    @classmethod
    def set_collection_name(cls) -> str:
        return 'banner_test'

Queries

banner = Banner.Q.find_one() # return a banner model obj
# skip and limit
banner_with_skip_and_limit = Banner.Q.find(skip_rows=10, limit_rows=10)
banner_data = Banner.Q.find_one().data # return a dict
banners_queryset= Banner.Q.find() # return QuerySet object
banners_dict = Banner.Q.find().data
list_of_banners = Banner.Q.find().list
banners_generator = Banner.Q.find().generator # generator of Banner objects
banners_generator_of_dicts = Banner.Q.find().data_generator # generator of Banner objects
count, banners = Banner.Q.find_with_count() # return tuple(int, QuerySet)

serializeble_fields = Banner.Q.find().serialize(['utm', 'banner_id', 'name']) # return list with dict like {'utm':..., 'banner_id': ..,'name': ...}
generator_serializeble_fields = Banner.Q.find().serialize_generator(['utm', 'banner_id', 'name']) # return generator
json_serializeble_fields = Banner.Q.find().serialize_json(['utm', 'banner_id', 'name']) # returnn json str serializeble

# count
count = Banner.Q.count(name='test')

# insert queries
Banner.Q.insert_one(banner_id=1, name='test', utm={'utm_source': 'yandex', 'utm_medium': 'cpc'})

banners = [Banner(banner_id=2, name='test2', utm={}), Banner(banner_id=3, name='test3', utm={})]
Banner.Q.insert_many(banners) # list off models obj, or dicts
Banner.Q.bulk_create(banners, batch_size=1000) # insert_many with batch

# update queries
Banner.Q.update_one(banner_id=1, name__set='updated') # parameters that end __set - been updated
Banner.Q.update_many(name__set='update all names')

# delete queries
Banner.Q.delete_one(banner_id=1) # delete one row
Banner.Q.delete_many(banner_id=1) # delete many rows

# extra queries
Banner.Q.find(banner_id__in=[1, 2]) # get data in list

Banner.Q.find(banner_id__range=[1,10]) # get date from 1 to 10

Banner.Q.find(name__regex='^test') # regex query

Banner.Q.find(name__startswith='t') # startswith query

Banner.Q.find(name__endswith='t') # endswith query
Banner.Q.find(name__not_startswith='t') # not startswith query

Banner.Q.find(name__not_endswith='t') # not endswith query


Banner.Q.find(name__nin=[1, 2]) # not in list

Banner.Q.find(name__ne='test') # != test

Banner.Q.find(banner_id__gte=1, banner_id__lte=10) # id >=1 and id <=10
Banner.Q.find(banner_id__gt=1, banner_id__lt=10) # id >1 and id <10
Banner.Q.find_one(banner_id=1, utm__utm_medium='cpm') # find banner where banner_id=1, and utm['utm_medium'] == 'cpm'

Banner.Q.update_one(banner_id=1, utm__utm_source__set='google') # update utms['utm_source'] in Banner

# find and update
Banner.Q.find_and_update(banner_id=1, name__set='updated', projection_fields=['name': True]) # return {'name': 'updated}
Banner.Q.find_and_update(banner_id=1, name__set='updated') # return Banner obj


# find and replace
Banner.Q.find_and_update(banner_id=1, Banner(banner_id=1, name='uptated'), projection={'name': True})
# return {'name': 'updated}
Banner.Q.find_and_update(banner_id=1, Banner(banner_id=1, name='uptated')) # return Banner obj


# bulk operations
from random import randint

banners = Banner.Q.find()
to_update = []

for banner in banners:
    banner.banner_id = randint(1,100)
    to_update.append(banner)

Banner.Q.bulk_update(banners, updated_fields=['banner_id'])

# bulk update or create

banners = [Banner(banner_id=23, name='new', utms={}), Banner(banner_id=1, name='test', utms={})]
Banner.Q.bulk_update_or_create(banners, query_fields=['banner_id'])

# aggregate with sum, min, max
class Stats(MongoModel):
    id: int
    cost: float
    clicks: int
    shows: int
    date: str

from mongodantic.aggregation import Sum, Min, Max

Stats.Q.simple_aggregate(date='2020-01-20', aggregation=Sum('cost'))
Stats.Q.simple_aggregate(date='2020-01-20', aggregation=Min('clicks'))
Stats.Q.simple_aggregate(date='2020-01-20', aggregation=Max('shows'))

# sessions
from mongodantic.session import Session
with Session(Banner) as session:
    Banner.Q.find(skip_rows=1, limit_rows=1, session=session).data


# logical
from mongodantic.logical import Query
data = Banner.Q.find_one(Query(name='test') | Query(name__regex='testerino'))


# for async queries

async def get_banner() -> Optiona[Banner]:
    banner = await Banner.AQ.find_one()
    return banner

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mongodantic-0.2.2b1.tar.gz (26.2 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page