Skip to main content

MongoDB RDG - Random data generator for MongoDB

Project description

mongodbrdg - The MongoDB Random Data Generator

Data generator for generating repeatable random data suitable for use in MongoDB databases. The data is designed to be random but self consistent. So user IDs increase consistently, session docs for login and logout are correctly ordered and sequence of login and logout events are also temporarily ordered.

We also ensure that session events happen only after the registered date for the user.

We generate one collection by default USERS/profiles. Users can generate a second collection by specifying the --session argument. The sessions collection is called USERs.sessions.

Installation

To install use pip or pipenv. You must be using python 3.6 or greater.

$ pip install mongodbrdg
Collecting mongodbrdg
...
Successfully built mongodbrdg
Installing collected packages: mongodbrdg
Successfully installed mongodbrdg-0.2a1

Running mongodbrdg

mongodbrdg installs on your python path and can be run by invoking

$ mongodbrdg

It expects to have a mongod running on the default port (27017). You can point the program at a different mongod and/or cluster by using the --mongodb argument.

Command line arguments

$ mongodbrdg -h
usage: mongodbrdg [-h] [--mongodb MONGODB] [--database DATABASE]
                  [--collection COLLECTION] [--idstart IDSTART]
                  [--idend IDEND] [--maxfriends MAXFRIENDS] [--seed SEED]
                  [--drop] [--report] [--session {none,random,count}]
                  [--sessioncount SESSIONCOUNT]
                  [--sessioncollection SESSIONCOLLECTION]
                  [--bucketsize BUCKETSIZE] [--stats] [-locale LOCALE]
                  [--batchsize BATCHSIZE]

mongodbrdg 0.4.5. Generate random JSON data for MongoDB (requires python 3.6).

optional arguments:
  -h, --help            show this help message and exit
  --mongodb MONGODB     MongoDB host: [default: mongodb://localhost:27017]
  --database DATABASE   MongoDB database name: [default: USERS]
  --collection COLLECTION
                        Default collection for random data:[default: profiles]
  --idstart IDSTART     The starting value for a user_id range [default: 0]
  --idend IDEND         The end value for a user_id range: [default: 10]
  --maxfriends MAXFRIENDS
                        Specify max number of friend to include in profile
                        [default: 0]
  --seed SEED           Use this seed value to ensure you always get the same
                        data
  --drop                Drop data before creating a new set [default: False]
  --report              send all generated JSON to the screen [default: False]
  --session {none,random,count}
                        Generate a sessions collection [default: none do not
                        generate]
  --sessioncount SESSIONCOUNT
                        Default number of sessions to generate.Gives the
                        random bound for random sessions [default: 5]
  --sessioncollection SESSIONCOLLECTION
                        Name of sessions collection: [default: sessions]
  --bucketsize BUCKETSIZE
                        Bucket size for insert_many [default: 1000]
  --stats               Report time to insert data
  -locale LOCALE        Locale to use for data: [default: en]
  --batchsize BATCHSIZE
                        How many docs to insert per batch: [default: 1000]
$```

# Example Data
The random data that is random but looks real. We use the python [mimesis](https://mimesis.readthedocs.io/) package
for this purpose. There are two separate collections that can be created. The
first is the `profiles` collection which contains example user records. A typical
example document is:

```json
{
  "first_name": "Donnetta",
  "last_name": "Page",
  "gender": "FEMALE",
  "company": "Syntel",
  "email": "Donnetta.Page@syntel.rio",
  "registered": "2010-06-09 11:06:05.882643",
  "user_id": 0,
  "country": "United States",
  "city": "Hayward",
  "phone": "1-171-738-1641",
  "location": {
    "type": "Point",
    "coordinates": [
      164.393576,
      59.535072
    ]
  },
  "language": "Dari",
  "interests": [
    "Reading",
    "politics"
  ]
}

The second is the the sessions document. If the user asks for sessions to be generated the we will generate a seperate collection keyed by the user_id and generate a collection of session documents.

Session documents look like this:

{
  "user_id": 0,
  "login": "2021-07-02 22:30:28.790370"
}

{
  "user_id": 0,
  "logout": "2021-07-04 00:15:29.543370"
}

They always come in matched pairs. A login document and a logout document. These docs are keyed by the user_id field which always matches to a valid profile doc.

Example Usage

Some simple examples of the program in action.

Create one random doc:

The parameter --idstart defaults to zero so this generates a python range of 0..1 which creates one document.

$ mongodbrdg --idend 1
Inserted 1 user docs into USERS.profiles
$

Create a doc and output it

We use the --report object to spit out the JSON to stdout. Note that although we generate datetime objects internally for insertion we convert these to a string representation for output to JSON.

$ mongodbrdg --idend 1 --report
{
  "first_name": "Patrick",
  "last_name": "David",
  "gender": "MALE",
  "company": "Danaher",
  "email": "Patrick.David@danaher.info",
  "registered": "2034-07-08 12:06:05.728825",
  "user_id": 0,
  "country": "United States",
  "city": "Yucca Valley",
  "phone": "(065) 868-4054",
  "location": {
    "type": "Point",
    "coordinates": [
      -42.659858,
      -2.631433
    ]
  },
  "language": "Malagasy",
  "interests": []
}
Inserted 1 user docs into USERS.profiles

Create many docs

$ mongodbrdg --idend 1000
Inserted 1000 user docs into USERS.profiles
$

Create the same data set every time

Use the --seed option to specify a random integer seed. Using the same seed ensures that the identical set of random data will be generated every time.

 mongodbrdg --idend 1 --report  --seed 123
{
  "first_name": "Billy",
  "last_name": "Evans",
  "gender": "MALE",
  "company": "Antec",
  "email": "Billy.Evans@antec.lt",
  "registered": "2018-05-03 13:17:06.879234",
  "user_id": 0,
  "country": "United States",
  "city": "Battle Ground",
  "phone": "1-288-353-0157",
  "location": {
    "type": "Point",
    "coordinates": [
      -83.63622,
      48.41215
    ]
  },
  "language": "Dhivehi",
  "interests": [
    "Darts",
    "Golf",
    "politics",
    "Board gaming",
    "Football"
  ]
}
Inserted 1 user docs into USERS.profiles

Generate a user record and associated session records

We specify that we want session records with the --session count arg. This tells use to generate a specific number of sessions. We then specify the number of sessions with --sessioncount. A single session generates a login and a logout document. For any given session the logout session always happens after the login session.

You can specify the following arguments to --session:

  • count : generate a specific number of sessions per user
  • random : generate a random number of sessions between 0 and --sessioncount
  • none (default) : Do not generate session data
$ mongodbrdg --idend 1 --report  --session count --sessioncount 1
{
  "first_name": "Jetta",
  "last_name": "Cline",
  "gender": "FEMALE",
  "company": "Integra Design",
  "email": "Jetta.Cline@integradesign.aero",
  "registered": "2029-05-09 19:40:34.866333",
  "user_id": 0,
  "country": "United States",
  "city": "Topeka",
  "phone": "(724) 108-6398",
  "location": {
    "type": "Point",
    "coordinates": [
      -154.636317,
      34.894447
    ]
  },
  "language": "Malayalam",
  "interests": [
    "Football",
    "skydiving",
    "Running",
    "politics",
    "Triathlon"
  ]
}
{
  "user_id": 0,
  "login": "2029-05-10 23:28:34.980333"
}
{
  "user_id": 0,
  "logout": "2029-05-12 01:36:35.248333"
}
Inserted 1 user docs into USERS.profiles
Inserted 2 session docs into USERS.sessions
$

Adding Friends to a user

For data requiring a graph structure we can add a friends field to the profile using the --maxfriends field. The default for --maxfriends field is 0. When the value is zero the field is omitted. For any value greater than zero we generate 0..maxfriends friends for each user. The friends are selected at random from --idstart to --idend.

$ mongodbrdg --idend 10 --maxfriends 2 --report
{
  "first_name": "Lavona",
  "last_name": "Rodriquez",
  "gender": "FEMALE",
  "company": "Atari",
  "email": "Lavona.Rodriquez@atari.ua",
  "registered": "2005-08-10 22:02:45.687955",
  "user_id": 0,
  "country": "United States",
  "city": "Watsonville",
  "phone": "1-407-350-4386",
  "location": {
    "type": "Point",
    "coordinates": [
      -26.850068,
      -56.593144
    ]
  },
  "language": "Japanese",
  "friends": [
    1,
    2
  ],
  "interests": [
    "Triathlon"
  ]
}
...

  "first_name": "Enrique",
  "last_name": "Dennis",
  "gender": "MALE",
  "company": "ABX Air",
  "email": "Enrique.Dennis@abxair.consulting",
  "registered": "2019-02-17 00:09:41.859429",
  "user_id": 9,
  "country": "United States",
  "city": "Hemet",
  "phone": "159-721-4912",
  "location": {
    "type": "Point",
    "coordinates": [
      -32.912016,
      -11.078288
    ]
  },
  "language": "Tsonga",
  "friends": [
    1,
    7
  ],
  "interests": [
    "Running",
    "Darts"
  ]
}
Inserted 10 user docs into USERS.profiles

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mongodbrdg-0.4.6.tar.gz (11.0 kB view details)

Uploaded Source

File details

Details for the file mongodbrdg-0.4.6.tar.gz.

File metadata

  • Download URL: mongodbrdg-0.4.6.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for mongodbrdg-0.4.6.tar.gz
Algorithm Hash digest
SHA256 72261dfb1ce60166ed5efe75125c0457d250f8a20af66c0bc205e05f00b96f69
MD5 f2a77b1a3c16a910f08481d50f593327
BLAKE2b-256 7346cddbf9801aa0a34eb49ebfec08a45e150fb91d721d53c884db405b587cdc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page