Skip to main content

Python tools for using MongoDB with the Python Shell (3.7)

Project description

# mongodbshell - A utility class for the Python Shell

the Python shell is the ideal environment for Python developers to interact
with MongoDB. However output cursors and interacting with the database requires
a little more boilerplate than is convenient. the `mongodbshell` package
provides a set a convenience functions and objects to allow easier
interaction with MongoDB via the Python interpreter.

The easiest way to get started with `mongodbshell` is to import the prebuilt
`mproxy` object. The `mproxy` object expects to connect to a `mongod` running
locally on port 27017 (it uses the [MongoDB URI](https://docs.mongodb.com/manual/reference/connection-string/)
`mongodb://localhost:27017` by default)

```python
$ python3
Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 03:03:55)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from mongodbshell import mproxy
>>> mproxy
Proxy('test', 'test', 'mongodb://localhost:27017')
>>> mproxy.list_database_names()
1 config
2 test
3 local
4 admin
>>>
```
Each proxy object has host of standard properties:
```python
>>> mproxy.client
MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True)
>>> mproxy.database
Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'test')
>>> mproxy.collection
Collection(Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'test'), 'test')
>>> mproxy.uri
'mongodb://localhost:27017'
>>>
```

There are also convenience functions for the most popular operations:

```python
>>> mproxy.is_master()
{'ismaster': True,
'localTime': datetime.datetime(2019, 1, 16, 15, 15, 41, 87000),
'logicalSessionTimeoutMinutes': 30,
'maxBsonObjectSize': 16777216,
'maxMessageSizeBytes': 48000000,
'maxWireVersion': 7,
'maxWriteBatchSize': 100000,
'minWireVersion': 0,
'ok': 1.0,
'readOnly': False}
>>> mproxy.insert_one({"name" : "Joe Drumgoole", "twitter_handle" : "@jdrumgoole"})
ObjectId('5c3f4f2fc3b498d6674b08f0')
>>> mproxy.find_one( {"name" : "Joe Drumgoole"})
1 {'_id': ObjectId('5c3f4b04c3b498d4a1c6ce22'),
2 'name': 'Joe Drumgoole',
3 'twitter_handle': '@jdrumgoole'}
```

## Line Numbers on Output

Line numbers are added to output by default. You can turn off line numbers by
setting the `line_numbers` flag to false.

```python
>>> mproxy.insert_one({"name" : "Joe Drumgoole", "twitter_handle" : "@jdrumgoole"})
ObjectId('5c3f4f2fc3b498d6674b08f0')
>>> mproxy.find_one( {"name" : "Joe Drumgoole"})
1 {'_id': ObjectId('5c3f4b04c3b498d4a1c6ce22'),
2 'name': 'Joe Drumgoole',
3 'twitter_handle': '@jdrumgoole'}
>>> mproxy.line_numbers = False # Turn off line numbers
>>> mproxy.find_one( {"name" : "Joe Drumgoole"})
{'_id': ObjectId('5c3f4b04c3b498d4a1c6ce22'),
'name': 'Joe Drumgoole',
'twitter_handle': '@jdrumgoole'}
>>>
```
## Connecting to a specific MongoDB URI

You can connect to a different database by using the `Proxy` class. Here is an
example connection to a [MongoDB Atlas](https://www.mongodb.com/cloud/atlas) hosted datbase.

```python
>>> from mongodbshell import Proxy
>>> atlas=Proxy(uri="mongodb+srv://readonly:readonly@demodata-rgl39.mongodb.net/test?retryWrites=true", database="demo", collection="zipcodes")
>>> atlas.find_one()
1 {'_id': '01069',
2 'city': 'PALMER',
3 'loc': [-72.328785, 42.176233],
4 'pop': 9778,
5 'state': 'MA'}

```

## Looking at large volumes of output

If you run a query in the python shell it will return a cursor and to look at
the objects in the cursor you need to either write a loop to consume the cursor
or explicitly call `next()` on each cursor item.

```python
>>> c=pymongo.MongoClient("mongodb+srv://readonly:readonly@demodata-rgl39.mongodb.net/test?retryWrites=true")
>>> db=c["demo"]
>>> collection=db["zipcodes"]
>>> collection.find()
<pymongo.cursor.Cursor object at 0x105bf1d68>
>>> cursor=collection.find()
>>> next(cursor)
{'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
>>> next(cursor)
{'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
>>>
```

This is tedious and becomes even more so when the objects are large enough to
scroll off the screen. This is not a problem with the `mongodbshell` as the
`Proxy` class and the built in `mproxy` object automatically handle
pretty printing and paginating outing.

```python
>>> atlas.find()
1 {'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
2 {'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
3 {'_id': '01012', 'city': 'CHESTERFIELD', 'loc': [-72.833309, 42.38167], 'pop': 177, 'state': 'MA'}
4 {'_id': '01073', 'city': 'SOUTHAMPTON', 'loc': [-72.719381, 42.224697], 'pop': 4478, 'state': 'MA'}
5 {'_id': '01096', 'city': 'WILLIAMSBURG', 'loc': [-72.777989, 42.408522], 'pop': 2295, 'state': 'MA'}
6 {'_id': '01262', 'city': 'STOCKBRIDGE', 'loc': [-73.322263, 42.30104], 'pop': 2200, 'state': 'MA'}
7 {'_id': '01240', 'city': 'LENOX', 'loc': [-73.271322, 42.364241], 'pop': 5001, 'state': 'MA'}
8 {'_id': '01370', 'city': 'SHELBURNE FALLS', 'loc': [-72.739059, 42.602203], 'pop': 4525, 'state': 'MA'}
9 {'_id': '01340', 'city': 'COLRAIN', 'loc': [-72.726508, 42.67905], 'pop': 2050, 'state': 'MA'}
10 {'_id': '01462', 'city': 'LUNENBURG', 'loc': [-71.726642, 42.58843], 'pop': 9117, 'state': 'MA'}
11 {'_id': '01473', 'city': 'WESTMINSTER', 'loc': [-71.909599, 42.548319], 'pop': 6191, 'state': 'MA'}
12 {'_id': '01510', 'city': 'CLINTON', 'loc': [-71.682847, 42.418147], 'pop': 13269, 'state': 'MA'}
13 {'_id': '01569', 'city': 'UXBRIDGE', 'loc': [-71.632869, 42.074426], 'pop': 10364, 'state': 'MA'}
14 {'_id': '01775', 'city': 'STOW', 'loc': [-71.515019, 42.430785], 'pop': 5328, 'state': 'MA'}
Hit Return to continue (q or quit to exit)
```
Pagination will dynamically adjust to screen height.

## Outputting to a file

The `Proxy` class can send output to a file by setting the `output_file` property
on the `Proxy` class.

```python
>>> atlas.output_file="zipcodes.txt"
>>> atlas.find()
Output is also going to 'zipcodes.txt'
1 {'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
2 {'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
3 {'_id': '01012', 'city': 'CHESTERFIELD', 'loc': [-72.833309, 42.38167], 'pop': 177, 'state': 'MA'}
4 {'_id': '01073', 'city': 'SOUTHAMPTON', 'loc': [-72.719381, 42.224697], 'pop': 4478, 'state': 'MA'}
5 {'_id': '01096', 'city': 'WILLIAMSBURG', 'loc': [-72.777989, 42.408522], 'pop': 2295, 'state': 'MA'}
6 {'_id': '01262', 'city': 'STOCKBRIDGE', 'loc': [-73.322263, 42.30104], 'pop': 2200, 'state': 'MA'}
7 {'_id': '01240', 'city': 'LENOX', 'loc': [-73.271322, 42.364241], 'pop': 5001, 'state': 'MA'}
8 {'_id': '01370', 'city': 'SHELBURNE FALLS', 'loc': [-72.739059, 42.602203], 'pop': 4525, 'state': 'MA'}
9 {'_id': '01340', 'city': 'COLRAIN', 'loc': [-72.726508, 42.67905], 'pop': 2050, 'state': 'MA'}
10 {'_id': '01462', 'city': 'LUNENBURG', 'loc': [-71.726642, 42.58843], 'pop': 9117, 'state': 'MA'}
11 {'_id': '01473', 'city': 'WESTMINSTER', 'loc': [-71.909599, 42.548319], 'pop': 6191, 'state': 'MA'}
12 {'_id': '01510', 'city': 'CLINTON', 'loc': [-71.682847, 42.418147], 'pop': 13269, 'state': 'MA'}
13 {'_id': '01569', 'city': 'UXBRIDGE', 'loc': [-71.632869, 42.074426], 'pop': 10364, 'state': 'MA'}
14 {'_id': '01775', 'city': 'STOW', 'loc': [-71.515019, 42.430785], 'pop': 5328, 'state': 'MA'}
>>> print(open('zipcodes.txt').read())
{'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
{'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
{'_id': '01012', 'city': 'CHESTERFIELD', 'loc': [-72.833309, 42.38167], 'pop': 177, 'state': 'MA'}
{'_id': '01073', 'city': 'SOUTHAMPTON', 'loc': [-72.719381, 42.224697], 'pop': 4478, 'state': 'MA'}
{'_id': '01096', 'city': 'WILLIAMSBURG', 'loc': [-72.777989, 42.408522], 'pop': 2295, 'state': 'MA'}
{'_id': '01262', 'city': 'STOCKBRIDGE', 'loc': [-73.322263, 42.30104], 'pop': 2200, 'state': 'MA'}
{'_id': '01240', 'city': 'LENOX', 'loc': [-73.271322, 42.364241], 'pop': 5001, 'state': 'MA'}
{'_id': '01370', 'city': 'SHELBURNE FALLS', 'loc': [-72.739059, 42.602203], 'pop': 4525, 'state': 'MA'}
{'_id': '01340', 'city': 'COLRAIN', 'loc': [-72.726508, 42.67905], 'pop': 2050, 'state': 'MA'}
{'_id': '01462', 'city': 'LUNENBURG', 'loc': [-71.726642, 42.58843], 'pop': 9117, 'state': 'MA'}
{'_id': '01473', 'city': 'WESTMINSTER', 'loc': [-71.909599, 42.548319], 'pop': 6191, 'state': 'MA'}
{'_id': '01510', 'city': 'CLINTON', 'loc': [-71.682847, 42.418147], 'pop': 13269, 'state': 'MA'}
{'_id': '01569', 'city': 'UXBRIDGE', 'loc': [-71.632869, 42.074426], 'pop': 10364, 'state': 'MA'}
{'_id': '01775', 'city': 'STOW', 'loc': [-71.515019, 42.430785], 'pop': 5328, 'state': 'MA'}
```
Output will continue to be sent to the `output_file` until the output_file is assigned
`None` or the empty string ("").

## Options

You can set the following options on the `mproxy` or `Proxy` class objects.

`proxy.line_numbers` : Bool. True to display line numbers in output, False to
remove them.

`proxy.pretty_print` : Bool. True to use `pprint.pprint` to output documents.
False to write them out as the database returned them.

`proxy.paginate` : Bool. True to paginate output based on screen height. False to just
send all output directly to console.

`proxy.output_file` : Str. Define a file to write results to. All output is
appended to the file. Each line is flushed so content is not lost. Set `output_file`
ton `None` or the emtpy string ("") to stop output going to a file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for mongodbshell, version 0.1a4
Filename, size File type Python version Upload date Hashes
Filename, size mongodbshell-0.1a4.tar.gz (8.7 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page