Skip to main content

Monk Classification's Gluoncv backend

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_cls_test1-0.0.11.tar.gz (207.4 kB view details)

Uploaded Source

Built Distribution

monk_cls_test1-0.0.11-py3-none-any.whl (334.3 kB view details)

Uploaded Python 3

File details

Details for the file monk_cls_test1-0.0.11.tar.gz.

File metadata

  • Download URL: monk_cls_test1-0.0.11.tar.gz
  • Upload date:
  • Size: 207.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.11.tar.gz
Algorithm Hash digest
SHA256 f24ae8fb3a88c9dd641943125b9922ac275d00fe70f09fcb9b276b98d0fd5ca3
MD5 0b6c183a6830bfef629a97b72bbd5717
BLAKE2b-256 333c670dcf3476d35c3bca58d31331aa304b2c2cb7369a57c1d44b962e3aab17

See more details on using hashes here.

Provenance

File details

Details for the file monk_cls_test1-0.0.11-py3-none-any.whl.

File metadata

  • Download URL: monk_cls_test1-0.0.11-py3-none-any.whl
  • Upload date:
  • Size: 334.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 a0072d56772fdc07c676891e25039761b39e1dff5828559afb3f5ada915668c7
MD5 65bf8d75633a410ccdfbf7c692bf8fd0
BLAKE2b-256 c729234cfca4b68c2e086bb8750c95db30b4bb554f1e58aa01728cc4538f4bb3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page