Monk Classification's Gluoncv backend
Project description
monk_v1
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.
Table of Contents
Sample Showcase
Create an image classification experiment.
- Load foldered dataset
- Set number of epochs
- Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/",
model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()
Inference
img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)
Compare Experiments
- Add created experiments with different hyperparameters
- Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
.
.
.
ctf.Generate_Statistics();
Installation
Support for
- OS
- Ubuntu 16.04
- Ubuntu 18.04
- Mac OS
- Windows
- Python
- Version 3.6
- Version 3.7
- Cuda
- Version 9.0
- Version 9.2
- Version 10.0
- Version 10.1
For Installation instructions visit: Link
Study Roadmaps
- Getting started with Monk
- Python sample examples
- Image Processing and Deep Learning
- Transfer Learning
- Image classification zoo
Documentation
-
Functional Documentation (Will be merged with Latest docs soon)
-
Features and Functions (In development):
-
Complete Latest Docs (In Progress)
TODO-2020
TODO-2020 - Features
- Model Visualization
- Pre-processed data visualization
- Learned feature visualization
- NDimensional data input - npy - hdf5 - dicom - tiff
- Multi-label Image Classification
- Custom model development
TODO-2020 - General
- Incorporate pep coding standards
- Functional Documentation
- Tackle Multiple versions of libraries
- Add unit-testing
- Contribution guidelines
TODO-2020 - Backend Support
- Tensorflow 2.0
- Chainer
TODO-2020 - External Libraries
- TensorRT Acceleration
- Intel Acceleration
- Echo AI - for Activation functions
Copyright
Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
monk_cls_test1-0.0.11.tar.gz
(207.4 kB
view details)
Built Distribution
File details
Details for the file monk_cls_test1-0.0.11.tar.gz
.
File metadata
- Download URL: monk_cls_test1-0.0.11.tar.gz
- Upload date:
- Size: 207.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f24ae8fb3a88c9dd641943125b9922ac275d00fe70f09fcb9b276b98d0fd5ca3 |
|
MD5 | 0b6c183a6830bfef629a97b72bbd5717 |
|
BLAKE2b-256 | 333c670dcf3476d35c3bca58d31331aa304b2c2cb7369a57c1d44b962e3aab17 |
Provenance
File details
Details for the file monk_cls_test1-0.0.11-py3-none-any.whl
.
File metadata
- Download URL: monk_cls_test1-0.0.11-py3-none-any.whl
- Upload date:
- Size: 334.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0072d56772fdc07c676891e25039761b39e1dff5828559afb3f5ada915668c7 |
|
MD5 | 65bf8d75633a410ccdfbf7c692bf8fd0 |
|
BLAKE2b-256 | c729234cfca4b68c2e086bb8750c95db30b4bb554f1e58aa01728cc4538f4bb3 |