Skip to main content

Monk Classification's Gluoncv backend

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_cls_test1-0.0.12.tar.gz (207.5 kB view details)

Uploaded Source

Built Distribution

monk_cls_test1-0.0.12-py3-none-any.whl (334.3 kB view details)

Uploaded Python 3

File details

Details for the file monk_cls_test1-0.0.12.tar.gz.

File metadata

  • Download URL: monk_cls_test1-0.0.12.tar.gz
  • Upload date:
  • Size: 207.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.12.tar.gz
Algorithm Hash digest
SHA256 341f89f3397ebf683434a3616f09ad240171c5b4e0eebedfa10e967ea7c6b1f1
MD5 7552921de57e3845a276c100625f0172
BLAKE2b-256 bbbf0f82a630fcd4860ee62b79c55ee728bb9ff7aa17561dea7bccc7f9e107c9

See more details on using hashes here.

Provenance

File details

Details for the file monk_cls_test1-0.0.12-py3-none-any.whl.

File metadata

  • Download URL: monk_cls_test1-0.0.12-py3-none-any.whl
  • Upload date:
  • Size: 334.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 7f8cefcd8731684f2ebe3aa88bb1aadb782559384d0b18a3ea4b621b8729ab1a
MD5 bb931b8e6b2fd1165b564bab1a08e83a
BLAKE2b-256 d2807ac9668161c1649bcd524cd850bd9c1f31a5eb7570a0f82a8f8ed0f5573c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page