Skip to main content

Monk Classification's Gluoncv backend

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_cls_test1-0.0.13.tar.gz (207.5 kB view details)

Uploaded Source

Built Distribution

monk_cls_test1-0.0.13-py3-none-any.whl (334.3 kB view details)

Uploaded Python 3

File details

Details for the file monk_cls_test1-0.0.13.tar.gz.

File metadata

  • Download URL: monk_cls_test1-0.0.13.tar.gz
  • Upload date:
  • Size: 207.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.13.tar.gz
Algorithm Hash digest
SHA256 92d439ce5e3402e9a9d962948e09150f9fd7ccecdfa853f6748c9c775a759828
MD5 fdd9cd53057baa19d66a10bce9adbb1c
BLAKE2b-256 9f28dd013c66c49e0d01a1061246adcddc0d6ec65370fccdf4bebcba8c06a51e

See more details on using hashes here.

Provenance

File details

Details for the file monk_cls_test1-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: monk_cls_test1-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 334.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 8b5ed9003f13eba8993d2516640000c9ed47cdc8f3cc601f16b2aa6842c05091
MD5 73b722399b464f28e8f3a133511abed0
BLAKE2b-256 da7c0d9dbee82b50ae91f21b1c7a18013c155d2b2220cb98fc377e4f8232fdc3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page