Skip to main content

Monk Classification's Gluoncv backend

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_cls_test1-0.0.15.tar.gz (208.0 kB view details)

Uploaded Source

Built Distribution

monk_cls_test1-0.0.15-py3-none-any.whl (336.9 kB view details)

Uploaded Python 3

File details

Details for the file monk_cls_test1-0.0.15.tar.gz.

File metadata

  • Download URL: monk_cls_test1-0.0.15.tar.gz
  • Upload date:
  • Size: 208.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.15.tar.gz
Algorithm Hash digest
SHA256 801f4b7dd4a849e57f94b34b186fd0cfe38ac77f6f4d2b0a45977da68392ae84
MD5 23844ee055108d35476ef1be6d77ff3f
BLAKE2b-256 7c6de1b9a966f7202b47688293fbbebc308985329a10cdf63ca77b861f0a0aac

See more details on using hashes here.

Provenance

File details

Details for the file monk_cls_test1-0.0.15-py3-none-any.whl.

File metadata

  • Download URL: monk_cls_test1-0.0.15-py3-none-any.whl
  • Upload date:
  • Size: 336.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 05de53beaca79ad967d94eca696ac11bf58c49e8094d6848430551c89589c9b0
MD5 c03969afadf4c24b5b5c0ce24fa94315
BLAKE2b-256 7020879dac06bfcc275b8a5c0c14f9e2578c377f9f231d08d1b72eb4ae85cdef

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page