Skip to main content

Monk Classification Library - Cuda100 - backends - pytorch, keras, gluon

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_cuda100-0.0.1.tar.gz (238.3 kB view details)

Uploaded Source

Built Distribution

monk_cuda100-0.0.1-py3-none-any.whl (515.2 kB view details)

Uploaded Python 3

File details

Details for the file monk_cuda100-0.0.1.tar.gz.

File metadata

  • Download URL: monk_cuda100-0.0.1.tar.gz
  • Upload date:
  • Size: 238.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cuda100-0.0.1.tar.gz
Algorithm Hash digest
SHA256 808d2e79e2ae5ad539d22b4b3ea513a46b4e72f589c59039ad713e8ab1052670
MD5 d7203423f037f68c5ea195406fd40c6b
BLAKE2b-256 3c6f2aca4760824b9336928dca2be0e4791d856c2c05d3b098b00c6400037e03

See more details on using hashes here.

File details

Details for the file monk_cuda100-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_cuda100-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cuda100-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 80e3a9d326686970112794854935b6ad84f924990458976eb9f45689474daddc
MD5 470e56b3bcf11e5fa3d306ced746809d
BLAKE2b-256 caef0e5debfa663865863fc3f2f3b75b451832a4ef8291964390d988bb47bb45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page