Skip to main content

Monk Classification Library - Cuda101 - backends - pytorch, keras, gluon

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_cuda101-0.0.1.tar.gz (238.6 kB view details)

Uploaded Source

Built Distribution

monk_cuda101-0.0.1-py3-none-any.whl (515.2 kB view details)

Uploaded Python 3

File details

Details for the file monk_cuda101-0.0.1.tar.gz.

File metadata

  • Download URL: monk_cuda101-0.0.1.tar.gz
  • Upload date:
  • Size: 238.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cuda101-0.0.1.tar.gz
Algorithm Hash digest
SHA256 e6403e6c3692f567cceb9484539dd1136eb0b77b124bdcaf84bce0220007615f
MD5 29620f0fbdba839858e47bbf23eeec91
BLAKE2b-256 7a620b2f247a8e13fd42b3c7b3075ac9f55ce17fb1121aafc083f673a31b95ae

See more details on using hashes here.

File details

Details for the file monk_cuda101-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_cuda101-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cuda101-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ca8b7c712e14035ffab8620ab23b9b464837762e984c81beb225d9481e3cfdd4
MD5 21cd4c333fd6e28e6cb31ec261415c20
BLAKE2b-256 6207a439f14e73df85cbe804d2e57c225287f8f1b66ee0130f3eba33635e2a51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page