Skip to main content

Monk Classification Library - Cuda102 - backends - pytorch, keras, gluon

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_cuda102-0.0.1.tar.gz (236.8 kB view details)

Uploaded Source

Built Distribution

monk_cuda102-0.0.1-py3-none-any.whl (515.2 kB view details)

Uploaded Python 3

File details

Details for the file monk_cuda102-0.0.1.tar.gz.

File metadata

  • Download URL: monk_cuda102-0.0.1.tar.gz
  • Upload date:
  • Size: 236.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cuda102-0.0.1.tar.gz
Algorithm Hash digest
SHA256 8e1a5e1dc9b65d9b33635183daaf3e04e7ee4ad5f69ccaaad0ab87af9e450806
MD5 06dffc7d11eace21d6f6d154b8595632
BLAKE2b-256 36c41fe52802d92548e9143c51c96760477dd3998994ff8774a78c3cd2b00b92

See more details on using hashes here.

File details

Details for the file monk_cuda102-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_cuda102-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cuda102-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b04a67e9e12580ff384ad9cceb0acdda3473278420eab1ef47b1a71bef9489be
MD5 f796bfe0991cd6a3c2aa97286037ba12
BLAKE2b-256 f16e044396d4fa2292dd3e11cde87f897d145edbfc8717a67c3f350ea99daa2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page