Skip to main content

Monk Classification Library - Cuda102 - backends - mxnet-gluon

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_gluon_cuda102-0.0.1.tar.gz (238.5 kB view details)

Uploaded Source

Built Distribution

monk_gluon_cuda102-0.0.1-py3-none-any.whl (515.3 kB view details)

Uploaded Python 3

File details

Details for the file monk_gluon_cuda102-0.0.1.tar.gz.

File metadata

  • Download URL: monk_gluon_cuda102-0.0.1.tar.gz
  • Upload date:
  • Size: 238.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_gluon_cuda102-0.0.1.tar.gz
Algorithm Hash digest
SHA256 45bdf473cdda40901d200d9eb6e5edb3a0d012f19d786018412c30dacbf37601
MD5 f81c826965f8c00048bb8edf3441cea5
BLAKE2b-256 5aea04029d04e9c8066047223693ece899ada1698e65e6415cd6bfcf30a0385a

See more details on using hashes here.

File details

Details for the file monk_gluon_cuda102-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_gluon_cuda102-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_gluon_cuda102-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 dd1d9af40707551e1777d4a2c28a98b5c29f4ddff188a5e5e3f56fda172692d1
MD5 cc9bfee8ad47244cafcb6b7a8c023737
BLAKE2b-256 e50c38cfd577661976d32ae42932a74721411760742c6b5db21c63f0a41e805b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page