Skip to main content

Monk Classification Library - Cuda92 - backends - mxnet-gluon

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_gluon_cuda92-0.0.1.tar.gz (238.5 kB view details)

Uploaded Source

Built Distribution

monk_gluon_cuda92-0.0.1-py3-none-any.whl (515.2 kB view details)

Uploaded Python 3

File details

Details for the file monk_gluon_cuda92-0.0.1.tar.gz.

File metadata

  • Download URL: monk_gluon_cuda92-0.0.1.tar.gz
  • Upload date:
  • Size: 238.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_gluon_cuda92-0.0.1.tar.gz
Algorithm Hash digest
SHA256 b38a884d93b33f61e3fc5ddc6e8556994b6e209fefbad0ad344eaecd9af9ed52
MD5 19ffa73618d8db3d6580bd6ae3fa4049
BLAKE2b-256 e8b51f00e9d646d120df49ae7e96888ee41f59efdb8a28d9926072eec326939c

See more details on using hashes here.

File details

Details for the file monk_gluon_cuda92-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_gluon_cuda92-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_gluon_cuda92-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 997289ad562030e9a779132734a0d270c39e620434e00989b6f3eba6d387fdf4
MD5 ad784abde9b97b7fba22749540d3aea1
BLAKE2b-256 fcd7e9345299f6f937243a7b9c22fabf63a159c1ad6b043b8a52932d891ce184

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page