Monk Classification - CPU - backends - keras
Project description
monk_v1
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.
Table of Contents
Sample Showcase
Create an image classification experiment.
- Load foldered dataset
- Set number of epochs
- Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/",
model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()
Inference
img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)
Compare Experiments
- Add created experiments with different hyperparameters
- Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
.
.
.
ctf.Generate_Statistics();
Installation
Support for
- OS
- Ubuntu 16.04
- Ubuntu 18.04
- Mac OS
- Windows
- Python
- Version 3.6
- Version 3.7
- Cuda
- Version 9.0
- Version 9.2
- Version 10.0
- Version 10.1
For Installation instructions visit: Link
Study Roadmaps
- Getting started with Monk
- Python sample examples
- Image Processing and Deep Learning
- Transfer Learning
- Image classification zoo
Documentation
-
Functional Documentation (Will be merged with Latest docs soon)
-
Features and Functions (In development):
-
Complete Latest Docs (In Progress)
TODO-2020
TODO-2020 - Features
- Model Visualization
- Pre-processed data visualization
- Learned feature visualization
- NDimensional data input - npy - hdf5 - dicom - tiff
- Multi-label Image Classification
- Custom model development
TODO-2020 - General
- Incorporate pep coding standards
- Functional Documentation
- Tackle Multiple versions of libraries
- Add unit-testing
- Contribution guidelines
TODO-2020 - Backend Support
- Tensorflow 2.0
- Chainer
TODO-2020 - External Libraries
- TensorRT Acceleration
- Intel Acceleration
- Echo AI - for Activation functions
Copyright
Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
monk_keras_cpu_test-0.0.11.tar.gz
(238.6 kB
view details)
Built Distribution
File details
Details for the file monk_keras_cpu_test-0.0.11.tar.gz
.
File metadata
- Download URL: monk_keras_cpu_test-0.0.11.tar.gz
- Upload date:
- Size: 238.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 84be9091e8c97cd6d13d07fc4130246631ba3199f1816a7e582402928adadc02 |
|
MD5 | 9f65ae04207d2b9298db90d69f8195ce |
|
BLAKE2b-256 | 6f3a316df11abaf5dcc0cd23bf16fe63cb5336c60b00446bec6e38c9e4296391 |
File details
Details for the file monk_keras_cpu_test-0.0.11-py3-none-any.whl
.
File metadata
- Download URL: monk_keras_cpu_test-0.0.11-py3-none-any.whl
- Upload date:
- Size: 515.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34d15c13eda44c9be067f715e9d1704c5064125b1d2371d133dd13584e217131 |
|
MD5 | 60ac42095cc6616d6425450f5cd050bb |
|
BLAKE2b-256 | e9664c7d5a8d5e7cd5c3b18462edb1aab4506baa5d2de9bfebaa2c78e9aca940 |