Skip to main content

Monk Classification Library - Cuda90 - backends - keras

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_keras_cuda90_test-0.0.1.tar.gz (238.7 kB view details)

Uploaded Source

Built Distribution

monk_keras_cuda90_test-0.0.1-py3-none-any.whl (515.3 kB view details)

Uploaded Python 3

File details

Details for the file monk_keras_cuda90_test-0.0.1.tar.gz.

File metadata

  • Download URL: monk_keras_cuda90_test-0.0.1.tar.gz
  • Upload date:
  • Size: 238.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_keras_cuda90_test-0.0.1.tar.gz
Algorithm Hash digest
SHA256 b785f764072beef117917062f6accc1f15fb8b7718991088555840cf7d69b2a7
MD5 03fff4a51f63bca40c0b19ed1146d763
BLAKE2b-256 cc75499e78371030dcb82a4d2e1f9b3ba70c931f0f6cd6fa99273615add723b8

See more details on using hashes here.

File details

Details for the file monk_keras_cuda90_test-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_keras_cuda90_test-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_keras_cuda90_test-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c5e0bdf3efd5c34be8a060fd33d619d1960abb7ca9ff8a6c2bc5b2af629d7d0a
MD5 3ce373b1fcb44def0c5c1badc693b63f
BLAKE2b-256 4ba113c1f12071284a4f7670f24137293ac921726c9295f5fd22894ee18a0f5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page