Skip to main content

Monk Classification Library - Cuda92 - backends - keras

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_keras_cuda92_test-0.0.1.tar.gz (238.8 kB view details)

Uploaded Source

Built Distribution

monk_keras_cuda92_test-0.0.1-py3-none-any.whl (515.3 kB view details)

Uploaded Python 3

File details

Details for the file monk_keras_cuda92_test-0.0.1.tar.gz.

File metadata

  • Download URL: monk_keras_cuda92_test-0.0.1.tar.gz
  • Upload date:
  • Size: 238.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_keras_cuda92_test-0.0.1.tar.gz
Algorithm Hash digest
SHA256 90889f96d018e979779854c3e7c8c017a5c71340b4a5a94153d294c05c8d7642
MD5 4621b01206d9974230f13430802ca94f
BLAKE2b-256 dc28bd08fb230d84fa1bb5aaaa66467f259e81af79aa4866ccc79a70cda83c88

See more details on using hashes here.

File details

Details for the file monk_keras_cuda92_test-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_keras_cuda92_test-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_keras_cuda92_test-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bb2ca6e3d8afa45610f8ee53dce2ad065d01c30a3b3fb9240af49b31553907e4
MD5 00f9486b6d685f3018a062d63eec43b8
BLAKE2b-256 8705545dad25220519856c92b460da05ebfa82daeeff85f8f5bba4e200709498

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page