Skip to main content

Monk Classification - CPU - backends - pytorch

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_pytorch_cpu-0.0.1.tar.gz (238.6 kB view details)

Uploaded Source

Built Distribution

monk_pytorch_cpu-0.0.1-py3-none-any.whl (515.2 kB view details)

Uploaded Python 3

File details

Details for the file monk_pytorch_cpu-0.0.1.tar.gz.

File metadata

  • Download URL: monk_pytorch_cpu-0.0.1.tar.gz
  • Upload date:
  • Size: 238.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_pytorch_cpu-0.0.1.tar.gz
Algorithm Hash digest
SHA256 820cd19c552ac9b8cafd5ce557318d0a47d9490a4a2d94a240c8a6110838aa57
MD5 95de842644c29943d8883a8aec0579e1
BLAKE2b-256 7b4b8e51887730d641bfef8f1559bf58a1250a047186db5fce2a29eee61f2662

See more details on using hashes here.

File details

Details for the file monk_pytorch_cpu-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_pytorch_cpu-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_pytorch_cpu-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 54a97cd65aa223bbd5f6000c832ee67a802ffb1142a01db86963369173c3447f
MD5 1a8b8092b950960cf04c01d72e939636
BLAKE2b-256 7812690f98f67eddc65d9cc07820ba5de45095477524840267482481308bffe3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page