Monk Classification Library - Cuda100 - backends - pytorch
Project description
monk_v1
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.
Table of Contents
Sample Showcase
Create an image classification experiment.
- Load foldered dataset
- Set number of epochs
- Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/",
model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()
Inference
img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)
Compare Experiments
- Add created experiments with different hyperparameters
- Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
.
.
.
ctf.Generate_Statistics();
Installation
Support for
- OS
- Ubuntu 16.04
- Ubuntu 18.04
- Mac OS
- Windows
- Python
- Version 3.6
- Version 3.7
- Cuda
- Version 9.0
- Version 9.2
- Version 10.0
- Version 10.1
For Installation instructions visit: Link
Study Roadmaps
- Getting started with Monk
- Python sample examples
- Image Processing and Deep Learning
- Transfer Learning
- Image classification zoo
Documentation
-
Functional Documentation (Will be merged with Latest docs soon)
-
Features and Functions (In development):
-
Complete Latest Docs (In Progress)
TODO-2020
TODO-2020 - Features
- Model Visualization
- Pre-processed data visualization
- Learned feature visualization
- NDimensional data input - npy - hdf5 - dicom - tiff
- Multi-label Image Classification
- Custom model development
TODO-2020 - General
- Incorporate pep coding standards
- Functional Documentation
- Tackle Multiple versions of libraries
- Add unit-testing
- Contribution guidelines
TODO-2020 - Backend Support
- Tensorflow 2.0
- Chainer
TODO-2020 - External Libraries
- TensorRT Acceleration
- Intel Acceleration
- Echo AI - for Activation functions
Copyright
Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file monk_pytorch_cuda100_test-0.0.1.tar.gz
.
File metadata
- Download URL: monk_pytorch_cuda100_test-0.0.1.tar.gz
- Upload date:
- Size: 238.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 166325bc4e64787b42d337851a4e9e821e0209a634944c5329a50f36ffc8b6ca |
|
MD5 | 3100c4da6106fe9ee0386ec2619b57e5 |
|
BLAKE2b-256 | 39e6cba95218887d5f220231d0186af0cdf0a8be16d0b324e0a5172afed3c35d |
Provenance
File details
Details for the file monk_pytorch_cuda100_test-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: monk_pytorch_cuda100_test-0.0.1-py3-none-any.whl
- Upload date:
- Size: 515.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cd051d315def0b0e279724b79c5cce1aa2f538bf6bd47451eaef0c477783ea2 |
|
MD5 | 1cbff15f2675eb400f39b9da89ae5555 |
|
BLAKE2b-256 | 28a918936e4e42f45d37c71131a7455e90d4973fc70638a37b2f503975ce04ca |