Skip to main content

Monk Classification Library - Cuda101 - backends - pytorch

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_pytorch_cuda101-0.0.1.tar.gz (238.3 kB view details)

Uploaded Source

Built Distribution

monk_pytorch_cuda101-0.0.1-py3-none-any.whl (515.3 kB view details)

Uploaded Python 3

File details

Details for the file monk_pytorch_cuda101-0.0.1.tar.gz.

File metadata

  • Download URL: monk_pytorch_cuda101-0.0.1.tar.gz
  • Upload date:
  • Size: 238.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_pytorch_cuda101-0.0.1.tar.gz
Algorithm Hash digest
SHA256 99ff05312652cc988a884eab75549483d4b542fc0e96f24ddd131a00678ff761
MD5 ca7cf8f6fc48eefd61deaf1d7f34ff36
BLAKE2b-256 6cd3df1b6ca8fce06fcdc45e91e6c53cd95738842487eee77385d35d5f83d885

See more details on using hashes here.

File details

Details for the file monk_pytorch_cuda101-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_pytorch_cuda101-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_pytorch_cuda101-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 393d1477fec3db744677bc41b200b12bcfe232bc0f8e4d2ee2469af1d7043bd0
MD5 8f80ec18fcd2edb1f6f7887435289064
BLAKE2b-256 440184e0612b4c387fed08d111dda68de6b400e24aa9d22fc14999f16fe69acc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page