Skip to main content

Monk Classification Library - Cuda92 - backends - pytorch

Project description

monk_v1 Tweet

Website

Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Version     Build_Status

Table of Contents




Sample Showcase

Create an image classification experiment.

  • Load foldered dataset
  • Set number of epochs
  • Run training
ptf = prototype(verbose=1)
ptf.Prototype("sample-project-1", "sample-experiment-1")
ptf.Default(dataset_path="./dataset_cats_dogs_train/", 
                model_name="resnet18", freeze_base_network=True, num_epochs=2)
ptf.Train()

Inference

img_name = "./monk/datasets/test/0.jpg";
predictions = ptf.Infer(img_name=img_name, return_raw=True);
print(predictions)

Compare Experiments

  • Add created experiments with different hyperparameters
  • Generate comparison plots
ctf = compare(verbose=1);
ctf.Comparison("Sample-Comparison-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-1");
ctf.Add_Experiment("sample-project-1", "sample-experiment-2");
    .
    . 
    .
ctf.Generate_Statistics();



Installation

Support for

  • OS
    • Ubuntu 16.04
    • Ubuntu 18.04
    • Mac OS
    • Windows
  • Python
    • Version 3.6
    • Version 3.7
  • Cuda
    • Version 9.0
    • Version 9.2
    • Version 10.0
    • Version 10.1

For Installation instructions visit: Link




Study Roadmaps




Documentation




TODO-2020

TODO-2020 - Features

  • Model Visualization
  • Pre-processed data visualization
  • Learned feature visualization
  • NDimensional data input - npy - hdf5 - dicom - tiff
  • Multi-label Image Classification
  • Custom model development

TODO-2020 - General

  • Incorporate pep coding standards
  • Functional Documentation
  • Tackle Multiple versions of libraries
  • Add unit-testing
  • Contribution guidelines

TODO-2020 - Backend Support

  • Tensorflow 2.0
  • Chainer

TODO-2020 - External Libraries

  • TensorRT Acceleration
  • Intel Acceleration
  • Echo AI - for Activation functions

Copyright

Copyright 2019 onwards, Tessellate Imaging Private Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. A copy of the License is provided in the LICENSE file in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_pytorch_cuda92_test-0.0.1.tar.gz (238.9 kB view details)

Uploaded Source

Built Distribution

monk_pytorch_cuda92_test-0.0.1-py3-none-any.whl (515.3 kB view details)

Uploaded Python 3

File details

Details for the file monk_pytorch_cuda92_test-0.0.1.tar.gz.

File metadata

  • Download URL: monk_pytorch_cuda92_test-0.0.1.tar.gz
  • Upload date:
  • Size: 238.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_pytorch_cuda92_test-0.0.1.tar.gz
Algorithm Hash digest
SHA256 d2c3c74cb74c81a43fde8ccb76ce349bcbf3c616043ccc5e4b4ee9036c8a095f
MD5 4f4d84387849cb037e0e52e369f0adb2
BLAKE2b-256 355b308fb030ccd90304716ae6ac4a529c1126a4a239376f4acec3e1c29d35b0

See more details on using hashes here.

File details

Details for the file monk_pytorch_cuda92_test-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_pytorch_cuda92_test-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 515.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_pytorch_cuda92_test-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7ca274f17e4e28b913969e6f9dbe37fe97168d7b6898df117ff6d758f7dd0cfe
MD5 013cc58eed99370dae943623664be822
BLAKE2b-256 5a878cf3c13311c477224873af3abc1d80b98b2fe20870cfe73c7f758d526cb2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page