Official Python client for the MonkeyLearn API
Project description
MonkeyLearn API for Python
Official Python client for the MonkeyLearn API. Build and run machine learning models for language processing from your Python apps.
Installation
You can use pip to install the library:
$ pip install monkeylearn
Alternatively, you can just clone the repository and run the setup.py script:
$ python setup.py install
Usage
Before making requests to the API, you need to create an instance of the MonkeyLearn client. You will have to use your account API Key:
from monkeylearn import MonkeyLearn
# Instantiate the client Using your API key
ml = MonkeyLearn('<YOUR API TOKEN HERE>')
Requests
From the MonkeyLearn client instance, you can call any endpoint (check the available endpoints below). For example, you can classify a list of texts using the public Sentiment analysis classifier:
response = ml.classifiers.classify(
model_id='cl_Jx8qzYJh',
data=[
'Great hotel with excellent location',
'This is the worst hotel ever.'
]
)
Responses
The response object returned by every endpoint call is a MonkeyLearnResponse
object. The body
attribute has the parsed response from the API:
print(response.body)
# => [
# => {
# => 'text': 'Great hotel with excellent location',
# => 'external_id': null,
# => 'error': false,
# => 'classifications': [
# => {
# => 'tag_name': 'Positive',
# => 'tag_id': 1994,
# => 'confidence': 0.922,
# => }
# => ]
# => },
# => {
# => 'text': 'This is the worst hotel ever.',
# => 'external_id': null,
# => 'error': false,
# => 'classifications': [
# => {
# => 'tag_name': 'Negative',
# => 'tag_id': 1941,
# => 'confidence': 0.911,
# => }
# => ]
# => }
# => ]
You can also access other attributes in the response object to get information about the queries used or available:
print(response.plan_queries_allowed)
# => 300
print(response.plan_queries_remaining)
# => 240
print(response.request_queries_used)
# => 2
Errors
Endpoint calls may raise exceptions. Here is an example on how to handle them:
from monkeylearn.exceptions import PlanQueryLimitError, MonkeyLearnException
try:
response = ml.classifiers.classify('[MODEL_ID]', data=['My text'])
except PlanQueryLimitError as e:
# No monthly queries left
# e.response contains the MonkeyLearnResponse object
print(e.error_code, e.detail)
except MonkeyLearnException:
raise
Available exceptions:
class | Description |
---|---|
MonkeyLearnException |
Base class for every exception below. |
RequestParamsError |
An invalid parameter was sent. Check the exception message or response object for more information. |
AuthenticationError |
Authentication failed, usually because an invalid token was provided. Check the exception message. More about Authentication. |
ForbiddenError |
You don't have permissions to perform the action on the given resource. |
ModelLimitError |
You have reached the custom model limit for your plan. |
ModelNotFound |
The model does not exist. Check the model_id . |
TagNotFound |
The tag does not exist. Check the tag_id parameter. |
PlanQueryLimitError |
You have reached the monthly query limit for your plan. Consider upgrading your plan. More about Plan query limits. |
PlanRateLimitError |
You have sent too many requests in the last minute. Check the exception detail. More about Plan rate limit. |
ConcurrencyRateLimitError |
You have sent too many requests in the last second. Check the exception detail. More about Concurrency rate limit. |
ModelStateError |
The state of the model is invalid. Check the exception detail. |
Auto-batching
Classify and Extract endpoints might require more than one request to the MonkeyLearn API in order to process every text in the data
parameter. If the auto_batch
parameter is True
(which is the default value), you won't have to keep the data
length below the max allowed value (200). You can just pass the full list and the library will handle the batching and make the necessary requests. If the retry_if_throttled
parameter is True
(which is the default value), it will also wait and retry if the API throttled a request.
Let's say you send a data
parameter with 300 texts and auto_batch
is enabled. The list will be split internally and two requests will be sent to MonkeyLearn with 200 and 100 texts, respectively. If all requests respond with a 200 status code, the responses will be appended and you will get the 300 classifications as usual in the MonkeyLearnResponse.body
attribute:
data = ['Text to classify'] * 300
response = ml.classifiers.classify('[MODEL_ID]', data)
assert len(response.body) == 300 # => True
Now, let's say you only had 200 queries left when trying the previous example, the second internal request would fail since you wouldn't have queries left after the first batch and a PlanQueryLimitError
exception would be raised. The first 200 (successful) classifications will be in the exception object. However, if you don't manage this exception with an except
clause, those first 200 successful classifications will be lost. Here's how you should handle that case:
from monkeylearn.exceptions import PlanQueryLimitError
data = ['Text to classify'] * 300
batch_size = 200
try:
response = ml.classifiers.classify('[MODEL_ID]', data, batch_size=batch_size)
except PlanQueryLimitError as e:
partial_predictions = e.response.body # The body of the successful responses
non_2xx_raw_responses = r.response.failed_raw_responses # List of requests responses objects
else:
predictions = response.body
This is very convenient and usually should be enough. If you need more flexibility, you can manage batching and rate limits yourself.
from time import sleep
from monkeylearn.exceptions import PlanQueryLimitError, ConcurrencyRateLimitError, PlanRateLimitError
data = ['Text to classify'] * 300
batch_size = 200
predictions = []
for i in range(0, len(data), batch_size):
batch_data = data[i:i + batch_size]
retry = True
while retry:
try:
retry = True
response = ml.classifiers.classify('[MODEL_ID]', batch_data, auto_batch=False,
retry_if_throttled=False)
except PlanRateLimitError as e:
sleep(e.seconds_to_wait)
except ConcurrencyRateLimitError:
sleep(2)
except PlanQueryLimitError:
raise
else:
retry = False
predictions.extend(response.body)
This way you'll be able to control every request that is sent to the MonkeyLearn API.
Available endpoints
These are all the endpoints of the API. For more information about each endpoint, check out the API documentation.
Classifiers
Classify
def MonkeyLearn.classifiers.classify(model_id, data, production_model=False, batch_size=200,
auto_batch=True, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
data | list[str or dict] |
A list of up to 200 data elements to classify. Each element must be a string with the text or a dict with the required text key and the text as the value. You can provide an optional external_id key with a string that will be included in the response. |
production_model | bool |
Indicates if the classifications are performed by the production model. Only use this parameter with custom models (not with the public ones). Note that you first need to deploy your model to production either from the UI model settings or by using the Classifier deploy endpoint. |
batch_size | int |
Max number of texts each request will send to MonkeyLearn. A number from 1 to 200. |
auto_batch | bool |
Split the data list into smaller valid lists, send each one in separate request to MonkeyLearn, and merge the responses. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
data = ['First text', {'text': 'Second text', 'external_id': '2'}]
response = ml.classifiers.classify('[MODEL_ID]', data)
Classifier detail
def MonkeyLearn.classifiers.detail(model_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.detail('[MODEL_ID]')
Create Classifier
def MonkeyLearn.classifiers.create(name, description='', algorithm='nb', language='en',
max_features=10000, ngram_range=(1, 1), use_stemming=True,
preprocess_numbers=True, preprocess_social_media=False,
normalize_weights=True, stopwords=True, whitelist=None,
retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
name | str |
The name of the model. |
description | str |
The description of the model. |
algorithm | str |
The algorithm used when training the model. It can be either "nb" or "svm". |
language | str |
The language of the model. Full list of supported languages. |
max_features | int |
The maximum number of features used when training the model. Between 10 and 100000. |
ngram_range | tuple(int,int) |
Indicates which n-gram range used when training the model. A list of two numbers between 1 and 3. They indicate the minimum and the maximum n for the n-grams used. |
use_stemming | bool |
Indicates whether stemming is used when training the model. |
preprocess_numbers | bool |
Indicates whether number preprocessing is done when training the model. |
preprocess_social_media | bool |
Indicates whether preprocessing of social media is done when training the model. |
normalize_weights | bool |
Indicates whether weights will be normalized when training the model. |
stopwords | bool or list |
The list of stopwords used when training the model. Use False for no stopwords, True for the default stopwords, or a list of strings for custom stopwords. |
whitelist | list |
The whitelist of words used when training the model. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.create(name='New classifier', stopwords=True)
Edit Classifier
def MonkeyLearn.classifiers.edit(model_id, name=None, description=None, algorithm=None,
language=None, max_features=None, ngram_range=None,
use_stemming=None, preprocess_numbers=None,
preprocess_social_media=None, normalize_weights=None,
stopwords=None, whitelist=None, retry_if_throttled=None)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
name | str |
The name of the model. |
description | str |
The description of the model. |
algorithm | str |
The algorithm used when training the model. It can be either "nb" or "svm". |
language | str |
The language of the model. Full list of supported languages. |
max_features | int |
The maximum number of features used when training the model. Between 10 and 100000. |
ngram_range | tuple(int,int) |
Indicates which n-gram range used when training the model. A list of two numbers between 1 and 3. They indicate the minimum and the maximum n for the n-grams used. |
use_stemming | bool |
Indicates whether stemming is used when training the model. |
preprocess_numbers | bool |
Indicates whether number preprocessing is done when training the model. |
preprocess_social_media | bool |
Indicates whether preprocessing of social media is done when training the model. |
normalize_weights | bool |
Indicates whether weights will be normalized when training the model. |
stopwords | bool or list |
The list of stopwords used when training the model. Use False for no stopwords, True for the default stopwords, or a list of strings for custom stopwords. |
whitelist | list |
The whitelist of words used when training the model. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.edit('[MODEL_ID]', description='The new description of the classifier')
Delete classifier
def MonkeyLearn.classifiers.delete(model_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.delete('[MODEL_ID]')
List Classifiers
def MonkeyLearn.classifiers.list(page=1, per_page=20, order_by='-created', retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
page | int |
Specifies which page to get. |
per_page | int |
Specifies how many items per page will be returned. |
order_by | string or list |
Specifies the ordering criteria. It can either be a string for single criteria ordering or a list of strings for more than one. Each string must be a valid field name; if you want inverse/descending order of the field prepend a - (dash) character. Some valid examples are: 'is_public' , '-name' or ['-is_public', 'name'] . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.list(page=2, per_page=5, order_by=['-is_public', 'name'])
Deploy
def MonkeyLearn.classifiers.deploy(model_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.deploy('[MODEL_ID]')
Train
def MonkeyLearn.classifiers.train(model_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.train('[MODEL_ID]')
Tag detail
def MonkeyLearn.classifiers.tags.detail(model_id, tag_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
tag_id | int |
Tag ID. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.tags.detail('[MODEL_ID]', TAG_ID)
Create tag
def MonkeyLearn.classifiers.tags.create(model_id, name, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
name | str |
The name of the new tag. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.tags.create('[MODEL_ID]', 'Positive')
Edit tag
def MonkeyLearn.classifiers.tags.edit(model_id, tag_id, name=None,
retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
tag_id | int |
Tag ID. |
name | str |
The new name of the tag. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.tags.edit('[MODEL_ID]', TAG_ID, 'New name')
Delete tag
def MonkeyLearn.classifiers.tags.delete(model_id, tag_id, move_data_to=None,
retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
tag_id | int |
Tag ID. |
move_data_to | int |
An optional tag ID. If provided, training data associated with the tag to be deleted will be moved to the specified tag before deletion. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.classifiers.tags.delete('[MODEL_ID]', TAG_ID)
Upload data
def MonkeyLearn.classifiers.upload_data(model_id, data, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Classifier ID. It always starts with 'cl' , for example, 'cl_oJNMkt2V' . |
data | list[dict] |
A list of dicts with the keys described below. |
input_duplicates_strategy | str |
Indicates what to do with duplicate texts in this request. Must be one of merge , keep_first or keep_last . |
existing_duplicates_strategy | str |
Indicates what to do with texts of this request that already exist in the model. Must be one of overwrite or ignore . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
data
dict keys:
Key | Description |
---|---|
text | A string of the text to upload. |
tags | A list of tags that can be refered to by their numeric ID or their name. The text will be tagged with each tag in the list when created (in case it doesn't already exist on the model). Otherwise, its tags will be updated to the new ones. New tags will be created if they don't already exist. |
markers | An optional list of string. Each one represents a marker that will be associated with the text. New markers will be created if they don't already exist. |
Example:
response = ml.classifiers.upload_data(
model_id='[MODEL_ID]',
data=[{'text': 'text 1', 'tags': [TAG_ID_1, '[tag_name]']},
{'text': 'text 2', 'tags': [TAG_ID_1, TAG_ID_2]}]
)
Extractors
Extract
def MonkeyLearn.extractors.extract(model_id, data, production_model=False, batch_size=200,
retry_if_throttled=True, extra_args=None)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Extractor ID. It always starts with 'ex' , for example, 'ex_oJNMkt2V' . |
data | list[str or dict] |
A list of up to 200 data elements to extract from. Each element must be a string with the text or a dict with the required text key and the text as the value. You can also provide an optional external_id key with a string that will be included in the response. |
production_model | bool |
Indicates if the extractions are performed by the production model. Only use this parameter with custom models (not with the public ones). Note that you first need to deploy your model to production from the UI model settings. |
batch_size | int |
Max number of texts each request will send to MonkeyLearn. A number from 1 to 200. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
data = ['First text', {'text': 'Second text', 'external_id': '2'}]
response = ml.extractors.extract('[MODEL_ID]', data=data)
Extractor detail
def MonkeyLearn.extractors.detail(model_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Extractor ID. It always starts with 'ex' , for example, 'ex_oJNMkt2V' . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.extractors.detail('[MODEL_ID]')
List extractors
def MonkeyLearn.extractors.list(page=1, per_page=20, order_by='-created', retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
page | int |
Specifies which page to get. |
per_page | int |
Specifies how many items per page will be returned. |
order_by | string or list |
Specifies the ordering criteria. It can either be a string for single criteria ordering or a list of strings for more than one. Each string must be a valid field name; if you want inverse/descending order of the field prepend a - (dash) character. Some valid examples are: 'is_public' , '-name' or ['-is_public', 'name'] . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.extractors.list(page=2, per_page=5, order_by=['-is_public', 'name'])
Workflows
Workflow detail
def MonkeyLearn.workflows.detail(model_id, step_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Workflow ID. It always starts with 'wf' , for example, 'wf_oJNMkt2V' . |
step_id | int |
Step ID. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.workflows.detail('[MODEL_ID]', '[STEP_ID]')
Create workflow
def MonkeyLearn.workflows.create(name, db_name, steps, description='', webhook_url=None,
custom_fields=None, sources=None, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
name | str |
The name of the model. |
db_name | str |
The name of the database where the data will be stored. The name must not already be in use by another database. |
steps | list[dict] |
A list of step dicts. |
description | str |
The description of the model. |
webhook_url | str |
An URL that will be called when an action is triggered. |
custom_fields | [] |
A list of custom_field dicts that represent user defined fields that come with the input data and that will be saved. It does not include the mandatory text field. |
sources | {} |
An object that represents the data sources of the workflow. |
Example:
response = ml.workflows.create(
name='Example Workflow',
db_name='example_workflow',
steps=[{
name: 'sentiment',
model_id: 'cl_pi3C7JiL'
}, {
name: 'keywords',
model_id: 'ex_YCya9nrn'
}])
Delete workflow
def MonkeyLearn.workflows.delete(model_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Workflow ID. It always starts with 'wf' , for example, 'wf_oJNMkt2V' . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.workflows.delete('[MODEL_ID]')
Step detail
def MonkeyLearn.workflows.steps.detail(model_id, step_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Workflow ID. It always starts with 'wf' , for example, 'wf_oJNMkt2V' . |
step_id | int |
Step ID. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.workflows.steps.detail('[MODEL_ID]', STEP_ID)
Create step
def MonkeyLearn.workflows.steps.create(model_id, name, step_model_id, input=None,
conditions=None, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Workflow ID. It always starts with 'wf' , for example, 'wf_oJNMkt2V' . |
name | str |
The name of the new step. |
step_model_id | str |
The ID of the MonkeyLearn model that will run in this step. Must be an existing classifier or extractor. |
input | str |
Where the input text to use in this step comes from. It can be either the name of a step or input_data (the default), which means that the input will be the original text. |
conditions | list[dict] |
A list of condition dicts that indicate whether this step should execute or not. All the conditions in the list must be true for the step to execute. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.workflows.steps.create(model_id='[MODEL_ID]', name='sentiment',
step_model_id='cl_pi3C7JiL')
Delete step
def MonkeyLearn.workflows.steps.delete(model_id, step_id, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Workflow ID. It always starts with 'wf' , for example, 'wf_oJNMkt2V' . |
step_id | int |
Step ID. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.workflows.steps.delete('[MODEL_ID]', STEP_ID)
Upload workflow data
def MonkeyLearn.workflows.data.create(model_id, data, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Workflow ID. It always starts with 'wf' , for example, 'wf_oJNMkt2V' . |
data | list[dict] |
A list of dicts with the keys described below. |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
data
dict keys:
Key | Description |
---|---|
text | A string of the text to upload. |
[custom field name] | The value for a custom field for this text. The type of the value must be the one specified when the field was created. |
Example:
response = ml.workflows.data.create(
model_id='[MODEL_ID]',
data=[{'text': 'text 1', 'rating': 3},
{'text': 'text 2', 'rating': 4}]
)
List workflow data
def MonkeyLearn.workflows.data.list(model_id, batch_id=None, is_processed=None,
sent_to_process_date_from=None, sent_to_process_date_to=None,
page=None, per_page=None, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
page | int |
The page number to be retrieved. |
per_page | int |
The maximum number of items the page should have. The maximum allowed value is 50 . |
batch_id | int |
The ID of the batch to retrieve. If unspecified, data from all batches is shown. |
is_processed | bool |
Whether to return data that has been processed or data that has not been processed yet. If unspecified, both are shown indistinctly. |
sent_to_process_date_from | str |
An ISO formatted date which specifies the oldest sent_date of the data to be retrieved. |
sent_to_process_date_to | str |
An ISO formatted date which specifies the most recent sent_date of the data to be retrieved. |
Example:
response = ml.workflows.data.list('[MODEL_ID]', batch_id=1839, page=1)
Create custom field
def MonkeyLearn.workflows.custom_fields.create(model_id, name, data_type, retry_if_throttled=True)
Parameters:
Parameter | Type | Description |
---|---|---|
model_id | str |
Workflow ID. It always starts with 'wf' , for example, 'wf_oJNMkt2V' . |
name | str |
The name of the new custom field. |
data_type | str |
The type of the data of the field. It must be one of string , date , text , integer , float , bool . |
retry_if_throttled | bool |
If a request is throttled, sleep and retry the request. |
Example:
response = ml.workflows.custom_fields.create(model_id='[MODEL_ID]', name='rating',
data_type='integer')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file monkeylearn-3.6.0.tar.gz
.
File metadata
- Download URL: monkeylearn-3.6.0.tar.gz
- Upload date:
- Size: 25.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b02fa453a5fc3df6be5e55e0cf5341435a3cb7ef365b8a24fe67951d20ae2431 |
|
MD5 | e6e7a9579ca21ea2f0bdb2f225339fb6 |
|
BLAKE2b-256 | e8d1348112f1ca777d492837c66f364296a7d80a14081da8d93d008fe0e8ec82 |
File details
Details for the file monkeylearn-3.6.0-py3-none-any.whl
.
File metadata
- Download URL: monkeylearn-3.6.0-py3-none-any.whl
- Upload date:
- Size: 17.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c3ba0dcd7d46fd75b601b6797444a804d41913e45ace2a676c51509ce72b32c |
|
MD5 | 39e2d4c55604dc6ada1428fbcb4c2f2a |
|
BLAKE2b-256 | f921b95f43ebc626e95a7a97e1ce7c05805182e0373134dde9c921d2774f0675 |