Skip to main content

Tools for the Monks advertising platform

Project description

monkstools

monkstools for team

begin to work. by Xiaowen kang. 2023.8.24. check . well done. by xiaowen kang. 2023.8.24 prepare for pypi package. by xiaowen kang. 2023.8.24.


1. Use Case

Analyze and calculate ROI (Return On Investment) based on given datasets: one reflecting group demographics and another indicating secondary preferences.

2. Sample Code

from monkstools.top_module import TopModule

def main():
    # Sample user data
    data = {
        "person_group": "TensorData Representation",  # Replace with actual data
        "secondary_preference": "Preferences Dataset"  # Replace with actual data
    }

    # Utilizing monkstools for ROI computation
    instance = TopModule(data)
    instance.calculate_roi()
    instance.display_results()

if __name__ == "__main__":
    main()

3. Documentation

monkstools Library Guide


Class: TopModule

  • Description: Central module for ROI calculations integrating PersonGroup and SecondaryPreference sub-modules.
  • Methods:
    • __init__(self, data: dict): Constructor expecting a dictionary containing data for person_group and secondary_preference.
    • calculate_roi(): Executes ROI calculation, invoking the analyze methods of sub-modules.
    • display_results(): Outputs the computed ROI results.

Class: PersonGroup

  • Description: Analyzes specific group data.
  • Methods:
    • __init__(self, tensor_data: str): Constructor expecting a string representation of the group data.
    • analyze(): Analyzes the group data.

Class: SecondaryPreference

  • Description: Focuses on secondary preference analysis.
  • Methods:
    • __init__(self, preferences_data: str): Constructor expecting a string representation of preference data.
    • analyze(): Analyzes the preference data.

To leverage this library, ensure monkstools is installed and data provided matches expected formats.


xiaowen kang. 2023.8.23

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monkstools-0.5.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

monkstools-0.5-py3-none-any.whl (4.4 kB view details)

Uploaded Python 3

File details

Details for the file monkstools-0.5.tar.gz.

File metadata

  • Download URL: monkstools-0.5.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.5.tar.gz
Algorithm Hash digest
SHA256 a573fdcc475e29f66f85e5b367fcc9b463e3b6eb797e45e1d2b2c6687b9ffbb5
MD5 67b135a401181af59bd09b145f8dc58c
BLAKE2b-256 74e8a974a1568b6192d1db10642fdde1b0a3b4b853a886e92b2ceed76aca08e9

See more details on using hashes here.

Provenance

File details

Details for the file monkstools-0.5-py3-none-any.whl.

File metadata

  • Download URL: monkstools-0.5-py3-none-any.whl
  • Upload date:
  • Size: 4.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 21dab9bcac510e2c6d145227d245366326b8606a276ead35be3ad5d144504f93
MD5 23ef9bb4e738c9e4e7d4c650cdc6a540
BLAKE2b-256 ab55baf21003b1c51525c136f48775afbaf0cde8b121fa5b024bfe28d1d9ea60

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page