Skip to main content

Tools for the Monks advertising platform

Project description

monkstools

monkstools for team

begin to work. by Xiaowen kang. 2023.8.24. check . well done. by xiaowen kang. 2023.8.24 prepare for pypi package. by xiaowen kang. 2023.8.24.


1. Use Case

Analyze and calculate ROI (Return On Investment) based on given datasets: one reflecting group demographics and another indicating secondary preferences.

2. Sample Code

from monkstools.top_module import TopModule

def main():
    # Sample user data
    data = {
        "person_group": "TensorData Representation",  # Replace with actual data
        "secondary_preference": "Preferences Dataset"  # Replace with actual data
    }

    # Utilizing monkstools for ROI computation
    instance = TopModule(data)
    instance.calculate_roi()
    instance.display_results()

if __name__ == "__main__":
    main()

3. Documentation

monkstools Library Guide


Class: TopModule

  • Description: Central module for ROI calculations integrating PersonGroup and SecondaryPreference sub-modules.
  • Methods:
    • __init__(self, data: dict): Constructor expecting a dictionary containing data for person_group and secondary_preference.
    • calculate_roi(): Executes ROI calculation, invoking the analyze methods of sub-modules.
    • display_results(): Outputs the computed ROI results.

Class: PersonGroup

  • Description: Analyzes specific group data.
  • Methods:
    • __init__(self, tensor_data: str): Constructor expecting a string representation of the group data.
    • analyze(): Analyzes the group data.

Class: SecondaryPreference

  • Description: Focuses on secondary preference analysis.
  • Methods:
    • __init__(self, preferences_data: str): Constructor expecting a string representation of preference data.
    • analyze(): Analyzes the preference data.

To leverage this library, ensure monkstools is installed and data provided matches expected formats.


xiaowen kang. 2023.8.23

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monkstools-0.6.tar.gz (10.3 kB view details)

Uploaded Source

Built Distribution

monkstools-0.6-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file monkstools-0.6.tar.gz.

File metadata

  • Download URL: monkstools-0.6.tar.gz
  • Upload date:
  • Size: 10.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.6.tar.gz
Algorithm Hash digest
SHA256 8042c664425c3c99126beaa313ff488d514a41910b8ecddc160316fa9b9d8b83
MD5 75758bb2b74b624e5818adc5fdb4c9b6
BLAKE2b-256 1da8b8666783470ea030a072c8d12b4e3c2c817a896ec62f964b2070bd96ede2

See more details on using hashes here.

Provenance

File details

Details for the file monkstools-0.6-py3-none-any.whl.

File metadata

  • Download URL: monkstools-0.6-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 4f1b8e8e4526836345d4821fc0066293f628f762594e2b5491f01153d574b1e5
MD5 e3390d942649d696602c16bf54efa096
BLAKE2b-256 9626256358f6ff8971703fb8909c95e449c61c01d39b0bce8b0d70271173cfef

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page