Skip to main content

Tools for the Monks advertising platform

Project description

monkstools

monkstools for team

begin to work. by Xiaowen kang. 2023.8.24. check . well done. by xiaowen kang. 2023.8.24 prepare for pypi package. by xiaowen kang. 2023.8.24.


1. Use Case

Analyze and calculate ROI (Return On Investment) based on given datasets: one reflecting group demographics and another indicating secondary preferences.

2. Sample Code

from monkstools.top_module import TopModule

def main():
    # Sample user data
    data = {
        "person_group": "TensorData Representation",  # Replace with actual data
        "secondary_preference": "Preferences Dataset"  # Replace with actual data
    }

    # Utilizing monkstools for ROI computation
    instance = TopModule(data)
    instance.calculate_roi()
    instance.display_results()

if __name__ == "__main__":
    main()

3. Documentation

monkstools Library Guide


Class: TopModule

  • Description: Central module for ROI calculations integrating PersonGroup and SecondaryPreference sub-modules.
  • Methods:
    • __init__(self, data: dict): Constructor expecting a dictionary containing data for person_group and secondary_preference.
    • calculate_roi(): Executes ROI calculation, invoking the analyze methods of sub-modules.
    • display_results(): Outputs the computed ROI results.

Class: PersonGroup

  • Description: Analyzes specific group data.
  • Methods:
    • __init__(self, tensor_data: str): Constructor expecting a string representation of the group data.
    • analyze(): Analyzes the group data.

Class: SecondaryPreference

  • Description: Focuses on secondary preference analysis.
  • Methods:
    • __init__(self, preferences_data: str): Constructor expecting a string representation of preference data.
    • analyze(): Analyzes the preference data.

To leverage this library, ensure monkstools is installed and data provided matches expected formats.


xiaowen kang. 2023.8.23

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monkstools-0.7.tar.gz (10.3 kB view details)

Uploaded Source

Built Distribution

monkstools-0.7-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file monkstools-0.7.tar.gz.

File metadata

  • Download URL: monkstools-0.7.tar.gz
  • Upload date:
  • Size: 10.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.7.tar.gz
Algorithm Hash digest
SHA256 f45fb273503181a35f69d87307cd3ac9c8c3261e2f399a119deb9c767d77c894
MD5 3bfa28353d653c00fc06415309d6b6d5
BLAKE2b-256 7c389f559be43b142a521768e2e5dc04487683403b605e111bee904a33005c96

See more details on using hashes here.

Provenance

File details

Details for the file monkstools-0.7-py3-none-any.whl.

File metadata

  • Download URL: monkstools-0.7-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 1475c88e85b4b50ccdd480061a656b94b0b1c505396bfb7074db384df0726585
MD5 81ef536d4f44376bf33e309294f509bc
BLAKE2b-256 f046cbf629ebfd3c8e64f089f0da49a4e4d6614906a5c3957dcd0748308eb7cb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page