Skip to main content

Tools for the Monks advertising platform

Project description

monkstools

monkstools for team

begin to work. by Xiaowen kang. 2023.8.24. check . well done. by xiaowen kang. 2023.8.24 prepare for pypi package. by xiaowen kang. 2023.8.24.


1. Use Case

Analyze and calculate ROI (Return On Investment) based on given datasets: one reflecting group demographics and another indicating secondary preferences.

2. Sample Code

from monkstools.top_module import TopModule

def main():
    # Sample user data
    data = {
        "person_group": "TensorData Representation",  # Replace with actual data
        "secondary_preference": "Preferences Dataset"  # Replace with actual data
    }

    # Utilizing monkstools for ROI computation
    instance = TopModule(data)
    instance.calculate_roi()
    instance.display_results()

if __name__ == "__main__":
    main()

3. Documentation

monkstools Library Guide


Class: TopModule

  • Description: Central module for ROI calculations integrating PersonGroup and SecondaryPreference sub-modules.
  • Methods:
    • __init__(self, data: dict): Constructor expecting a dictionary containing data for person_group and secondary_preference.
    • calculate_roi(): Executes ROI calculation, invoking the analyze methods of sub-modules.
    • display_results(): Outputs the computed ROI results.

Class: PersonGroup

  • Description: Analyzes specific group data.
  • Methods:
    • __init__(self, tensor_data: str): Constructor expecting a string representation of the group data.
    • analyze(): Analyzes the group data.

Class: SecondaryPreference

  • Description: Focuses on secondary preference analysis.
  • Methods:
    • __init__(self, preferences_data: str): Constructor expecting a string representation of preference data.
    • analyze(): Analyzes the preference data.

To leverage this library, ensure monkstools is installed and data provided matches expected formats.


xiaowen kang. 2023.8.23

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monkstools-0.8.tar.gz (15.9 kB view details)

Uploaded Source

Built Distribution

monkstools-0.8-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file monkstools-0.8.tar.gz.

File metadata

  • Download URL: monkstools-0.8.tar.gz
  • Upload date:
  • Size: 15.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.8.tar.gz
Algorithm Hash digest
SHA256 a09649ae5028594e808ddf9cf447163bb87b6da47bde8aba09d11d0ebc74f126
MD5 5d2f470b2955cd5a5942191fbf386942
BLAKE2b-256 081af5268178502268141cd2c161c2f69a94dc5b8adc377cfdbd13e938cdfbc8

See more details on using hashes here.

Provenance

File details

Details for the file monkstools-0.8-py3-none-any.whl.

File metadata

  • Download URL: monkstools-0.8-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 a96ac74f0bd86ae11fa9dc9210bd1bb0557f513f0ccab743aa1d7c4db89f5ec2
MD5 4e97f98f3bba66a4e84c4ace5d340dec
BLAKE2b-256 7a41327e6633c26b1dca3d33d54ac53bd0bcd523bb2eb358aa53fb7aa9a17a0a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page