Skip to main content

Tools for the Monks advertising platform

Project description

monkstools

monkstools for team

begin to work. by Xiaowen kang. 2023.8.24. check . well done. by xiaowen kang. 2023.8.24 prepare for pypi package. by xiaowen kang. 2023.8.24.


1. Use Case

Analyze and calculate ROI (Return On Investment) based on given datasets: one reflecting group demographics and another indicating secondary preferences.

2. Sample Code

from monkstools.top_module import TopModule

def main():
    # Sample user data
    data = {
        "person_group": "TensorData Representation",  # Replace with actual data
        "secondary_preference": "Preferences Dataset"  # Replace with actual data
    }

    # Utilizing monkstools for ROI computation
    instance = TopModule(data)
    instance.calculate_roi()
    instance.display_results()

if __name__ == "__main__":
    main()

3. Documentation

monkstools Library Guide


Class: TopModule

  • Description: Central module for ROI calculations integrating PersonGroup and SecondaryPreference sub-modules.
  • Methods:
    • __init__(self, data: dict): Constructor expecting a dictionary containing data for person_group and secondary_preference.
    • calculate_roi(): Executes ROI calculation, invoking the analyze methods of sub-modules.
    • display_results(): Outputs the computed ROI results.

Class: PersonGroup

  • Description: Analyzes specific group data.
  • Methods:
    • __init__(self, tensor_data: str): Constructor expecting a string representation of the group data.
    • analyze(): Analyzes the group data.

Class: SecondaryPreference

  • Description: Focuses on secondary preference analysis.
  • Methods:
    • __init__(self, preferences_data: str): Constructor expecting a string representation of preference data.
    • analyze(): Analyzes the preference data.

To leverage this library, ensure monkstools is installed and data provided matches expected formats.


xiaowen kang. 2023.8.23

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monkstools-0.9.tar.gz (15.9 kB view details)

Uploaded Source

Built Distribution

monkstools-0.9-py3-none-any.whl (15.7 kB view details)

Uploaded Python 3

File details

Details for the file monkstools-0.9.tar.gz.

File metadata

  • Download URL: monkstools-0.9.tar.gz
  • Upload date:
  • Size: 15.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.9.tar.gz
Algorithm Hash digest
SHA256 a7cda26c9687b1d83891175728cf0559d1d5920aa4b0e9450e7799204ec4ac01
MD5 3b3f438fa82b9085e43e876cbfcc91b8
BLAKE2b-256 562b2ae6cb495e65c64f12a355b88013afdece61171f125c5be9288c1f6dbc0b

See more details on using hashes here.

Provenance

File details

Details for the file monkstools-0.9-py3-none-any.whl.

File metadata

  • Download URL: monkstools-0.9-py3-none-any.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.0

File hashes

Hashes for monkstools-0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 f4002ad2ef01dea33cec46ef88c5a1dd34f24769eec33107eda8363ceefa8b78
MD5 a17e234315c7d7d39c420f85aecae555
BLAKE2b-256 ad36051c0e8e9a00b86bceeae02f644d8013af7235c5f17dedd1c92c0bde36a6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page