Python wrapper for C++ codes for the monotone scheme for curvature-driven PDEs
Project description
Monotone schemes for curvature-driven PDEs
by Jeff Calder (UMN) and Wonjun Lee (UMN)
- Paper: arXiv
- Jeff Calder, School of Mathematics, University of Minnesota: website
- Wonjun Lee, Institute for Mathematics and Its Applications, Uniersity of Minnesota: website
Outline
This repository contains c++ and python codes for running the monotone algorithm to solve curvature-driven PDEs. Here are list of PDEs that can be solved using this algorithm. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain and $\partial \Omega$ be a boundary of $\Omega$.
Eikonal equation
$$ \begin{align*} |\nabla u(x)| &= f(x), && x \in \Omega \ x &= 0, && x \in \partial \Omega \end{align*} $$
Mean curvature PDE
$$ \begin{align*} |\nabla u(x)|\kappa(x) &= f(x), && x \in \Omega \ x &= 0, && x \in \partial \Omega \end{align*}$$ where $\kappa(x) = - \text{div}\left( \frac{\nabla u}{|\nabla u|} \right)$ is the mean curvature of the level set surface of $u$ passing through $x$.
Affine flows PDE
$$ \begin{align*} |\nabla u(x)|\kappa(x)+^{\alpha} &= f(x), && x \in \Omega \ x &= 0, && x \in \partial \Omega \end{align*}$$ where $\alpha \in (0,1]$ is a constant depending on the dimension $d$ and $(t)+ := \max(0,t)$.
Tukey Depth
$$ |\nabla u(x)| = \int_{(y-x)\cdot \nabla u(x) = 0} \rho(y) dS(y), \quad x \in \Omega.$$
Tutorial
Prerequisites
pip
python >= 3.6
Follow this link to see the instruction for the installation of pip
: https://pip.pypa.io/en/stable/installation/.
Installing the package
First install the package by running the following command:
pip install MonotoneScheme
(TO BE CONTINUED)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file monotonescheme-0.0.16.tar.gz
.
File metadata
- Download URL: monotonescheme-0.0.16.tar.gz
- Upload date:
- Size: 16.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/1.0.0 urllib3/1.26.3 tqdm/4.65.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8563802df96d988d0cd6cf150f1c2c11df43f98a17f5ae070dd6a3d5292c647 |
|
MD5 | 35d442fd29a1c10baf6b995108e066a3 |
|
BLAKE2b-256 | b09b3a01cc58224e752e80fee1b35ad5cd57d13b870d89392a5a418a68a4248f |
File details
Details for the file monotonescheme-0.0.16-cp36-cp36m-macosx_10_14_x86_64.whl
.
File metadata
- Download URL: monotonescheme-0.0.16-cp36-cp36m-macosx_10_14_x86_64.whl
- Upload date:
- Size: 117.8 kB
- Tags: CPython 3.6m, macOS 10.14+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/1.0.0 urllib3/1.26.3 tqdm/4.65.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14a87e9f3c38faa3ace75076bb4f84731003d02400296d872db12002f3679cae |
|
MD5 | ebdcefbdd3d03c397a180a1dd83600a1 |
|
BLAKE2b-256 | cae2fb20a3674810c9d7d2dca96e37f21c28f00f8d991d7486c4dbc680c7a9c8 |