Skip to main content

Python wrapper for C++ codes for the monotone scheme for curvature-driven PDEs

Project description

Monotone schemes for curvature-driven PDEs

by Jeff Calder (UMN) and Wonjun Lee (UMN)

  • Paper: arXiv
  • Jeff Calder, School of Mathematics, University of Minnesota: website
  • Wonjun Lee, Institute for Mathematics and Its Applications, Uniersity of Minnesota: website

Outline

This repository contains c++ and python codes for running the monotone algorithm to solve curvature-driven PDEs. Here are list of PDEs that can be solved using this algorithm. Let $\Omega \subset \mathbb{R}^d$ be a bounded domain and $\partial \Omega$ be a boundary of $\Omega$.

Eikonal equation

$$ \begin{align*} |\nabla u(x)| &= f(x), && x \in \Omega \ x &= 0, && x \in \partial \Omega \end{align*} $$

Mean curvature PDE

$$ \begin{align*} |\nabla u(x)|\kappa(x) &= f(x), && x \in \Omega \ x &= 0, && x \in \partial \Omega \end{align*}$$ where $\kappa(x) = - \text{div}\left( \frac{\nabla u}{|\nabla u|} \right)$ is the mean curvature of the level set surface of $u$ passing through $x$.

Affine flows PDE

$$ \begin{align*} |\nabla u(x)|\kappa(x)+^{\alpha} &= f(x), && x \in \Omega \ x &= 0, && x \in \partial \Omega \end{align*}$$ where $\alpha \in (0,1]$ is a constant depending on the dimension $d$ and $(t)+ := \max(0,t)$.

Tukey Depth

$$ |\nabla u(x)| = \int_{(y-x)\cdot \nabla u(x) = 0} \rho(y) dS(y), \quad x \in \Omega.$$


Tutorial

Prerequisites

  • pip
  • python >= 3.6

Follow this link to see the instruction for the installation of pip: https://pip.pypa.io/en/stable/installation/.

Installing the package

First install the package by running the following command:

    pip install MonotoneScheme

(TO BE CONTINUED)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monotonescheme-0.0.16.tar.gz (16.6 kB view details)

Uploaded Source

Built Distribution

monotonescheme-0.0.16-cp36-cp36m-macosx_10_14_x86_64.whl (117.8 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file monotonescheme-0.0.16.tar.gz.

File metadata

  • Download URL: monotonescheme-0.0.16.tar.gz
  • Upload date:
  • Size: 16.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/1.0.0 urllib3/1.26.3 tqdm/4.65.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.10

File hashes

Hashes for monotonescheme-0.0.16.tar.gz
Algorithm Hash digest
SHA256 b8563802df96d988d0cd6cf150f1c2c11df43f98a17f5ae070dd6a3d5292c647
MD5 35d442fd29a1c10baf6b995108e066a3
BLAKE2b-256 b09b3a01cc58224e752e80fee1b35ad5cd57d13b870d89392a5a418a68a4248f

See more details on using hashes here.

File details

Details for the file monotonescheme-0.0.16-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: monotonescheme-0.0.16-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 117.8 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.25.1 requests-toolbelt/1.0.0 urllib3/1.26.3 tqdm/4.65.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.10

File hashes

Hashes for monotonescheme-0.0.16-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 14a87e9f3c38faa3ace75076bb4f84731003d02400296d872db12002f3679cae
MD5 ebdcefbdd3d03c397a180a1dd83600a1
BLAKE2b-256 cae2fb20a3674810c9d7d2dca96e37f21c28f00f8d991d7486c4dbc680c7a9c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page