Skip to main content

A multi-omics integrative analysis tool

Project description

MONTI: A Multi-Omics Non-negative Tensor decomposition framework for the Integrated analysis of large cancer cohorts

Multi-omics data is frequently measured to characterize biological mechanisms underlying phenotypes. Complex relationships in multi-omics data, if mined, can lead to more accurate classification of patient samples according to the phenotypes.

MONTI (Multi-Omics Non-negative Tensor decomposition for Integrative analysis) is a tool that can be used to integrate and analyze large sets of multi-omics data. MONTI identifies gene regulatory multi-omics features specific to a group of samples that share a common biological trait.

Below is an illustration of the analysis workflow of MONTI. workflow

The output of MONTI is a simple gene list with information of their associated subtypes, which can be used for further downstream analysis. For example, the Venn diagram below shows the genes that are found to be associated to colorectal cancer subtypes CMS1, CMS2, CMS3 and CMS4. These genes showed to be informative in separating the four subtypes as shown in the t-SNE plot.

example output

Install MONTI

MONTI is developed in python3 and can be installed as below

python3 -m pip install monti

Tutorial using colon cancer data (TCGA-COAD)

A brief tutorial for using MONTI can be found under the 'tutorial' directory. The associated multi-omics data are included.

Before starting the tutorial, the dataset should be downloaded. After download decompress data by

cd <download_path>
tar -xzvf tutorial_data_coad.tar.gz

The <download_path> should also be used as the tutorial directory, or you can simply move the data to another directory to be used for the tutorial.

The data includes three omics data, 1) gene expression (mRNA), 2) methylation level and 3) miRNA expression. They are raw data directly collected from the TCGA portal.

In the jupyter notebook shows an example of how to integrate multi-omics data in a gene-level manner and extract features that can classify the molecular subtypes of COAD.

The tutorial includes the below analysis procedures:

  • gene-level transformation
  • normalization
  • feature selection
  • classification accuracy measurement and
  • plotting of the results

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monti-1.2.2.tar.gz (10.5 kB view details)

Uploaded Source

Built Distribution

monti-1.2.2-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file monti-1.2.2.tar.gz.

File metadata

  • Download URL: monti-1.2.2.tar.gz
  • Upload date:
  • Size: 10.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for monti-1.2.2.tar.gz
Algorithm Hash digest
SHA256 9e6572eea29afc0eb0b32d0782ecf97b61e9df2e0fe1d7ec06a5b1eb2859bfa9
MD5 47bbbc174a6b407b50ec2cbdc4c62c4f
BLAKE2b-256 8dd0904a4c3abe570e2b5c5f181b983dcfaa08dc4038f9787832ec0676a5b836

See more details on using hashes here.

Provenance

File details

Details for the file monti-1.2.2-py3-none-any.whl.

File metadata

  • Download URL: monti-1.2.2-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for monti-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8c0fbc75f7719361c6597491911b63207c9c02481c51963a4789ca2b28acb4d7
MD5 124f8fb9ebe35d2bc1c075c1e7bc3a81
BLAKE2b-256 829d128b421043ea7a780ba4e214cab678460015c71a9946f08b3088c602fbeb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page