Skip to main content

Community-Maintained Version of mordred

Project description

mordred-community

Community maintained version of the mordred molecular descriptor calculator which is no longer maintained.

We are accepting pull requests and looking for maintainers! Reach out on the Issues page if you are interested in helping out!

Installation

mordredcommunity is currently available on PyPI with pip install mordredcommunity or via the conda package manager with conda install -c conda-forge mordredcommunity.

mordredcommunity supports Python 3.8 and newer on all platforms.

To add support for pandas and progress bars, use PyPI and call pip install mordredcommunity[full].

Usage of mordredcommunity is the same as mordred.

Packages using mordredcommunity

Number of Descriptors

>>> from mordred import Calculator, descriptors
>>> n_all = len(Calculator(descriptors, ignore_3D=False).descriptors)
>>> n_2D = len(Calculator(descriptors, ignore_3D=True).descriptors)
>>> print("2D:    {:5}\n3D:    {:5}\n------------\ntotal: {:5}".format(n_2D, n_all - n_2D, n_all))
2D:     1613
3D:      213
------------
total:  1826

Examples

calculate all descriptors

$ python -m mordred example.smi
name,ECIndex,WPath,WPol,Zagreb1, (snip)
benzene,36,27,3,24.0, (snip)
chrolobenzene,45,42,5,30.0, (snip)

save to file (display progress bar)

$ python -m mordred example.smi -o example.csv
50%|███████████████████████████████████████▌                                       | 1/2 [00:00<00:00,  7.66it/s]

stream read (low memory, no number of molecules information)

$ python -m mordred example.smi -s -o example.csv
0it [00:00, ?it/s]

only ABCIndex

$ python -m mordred example.smi -d ABCIndex
name,ABC,ABCGG
benzene,4.242640687119286,3.9999999999999996
chlorobenzene,5.059137268047012,4.785854275382693

ABCIndex and AcidBase

$ python -m mordred example.smi -d ABCIndex -d AcidBase
name,ABC,ABCGG,nAcid,nBase
benzene,4.242640687119286,3.9999999999999996,0,0
chlorobenzene,5.059137268047012,4.785854275382693,0,0

multiple input

$ python -m mordred example.smi example2.smi -d ABCIndex
name,ABC,ABCGG
benzene,4.242640687119286,3.9999999999999996
chlorobenzene,5.059137268047012,4.785854275382693
pentane,2.8284271247461903,3.1462643699419726

show help

$ python -m mordred --help
usage: python -m mordred [-h] [--version] [-t {auto,sdf,mol,smi}] [-o OUTPUT]
                            [-p PROCESSES] [-q] [-s] [-d DESC] [-3] [-v]
                            INPUT [INPUT ...]

positional arguments:
    INPUT

optional arguments:
    -h, --help            show this help message and exit
    --version             input molecular file
    -t {auto,sdf,mol,smi}, --type {auto,sdf,mol,smi}
                        input filetype (default: auto)
    -o OUTPUT, --output OUTPUT
                        output file path (default: stdout)
    -p PROCESSES, --processes PROCESSES
                        number of processes (default: number of logical
                        processors)
    -q, --quiet           hide progress bar
    -s, --stream          stream read
    -d DESC, --descriptor DESC
                        descriptors to calculate (default: all)
    -3, --3D              use 3D descriptors (require sdf or mol file)
    -v, --verbosity       verbosity

descriptors: ABCIndex AcidBase AdjacencyMatrix Aromatic AtomCount
Autocorrelation BalabanJ BaryszMatrix BCUT BertzCT BondCount CarbonTypes Chi
Constitutional CPSA DetourMatrix DistanceMatrix EccentricConnectivityIndex
EState ExtendedTopochemicalAtom FragmentComplexity Framework GeometricalIndex
GravitationalIndex HydrogenBond InformationContent KappaShapeIndex Lipinski
McGowanVolume MoeType MolecularDistanceEdge MolecularId MomentOfInertia MoRSE
PathCount Polarizability RingCount RotatableBond SLogP TopologicalCharge
TopologicalIndex TopoPSA VdwVolumeABC VertexAdjacencyInformation WalkCount
Weight WienerIndex ZagrebIndex

as library

>>> from rdkit import Chem
>>> from mordred import Calculator, descriptors

# create descriptor calculator with all descriptors
>>> calc = Calculator(descriptors, ignore_3D=True)

>>> len(calc.descriptors)
1613

>>> len(Calculator(descriptors, ignore_3D=True, version="1.0.0"))
1612

# calculate single molecule
>>> mol = Chem.MolFromSmiles('c1ccccc1')
>>> calc(mol)[:3]
[4.242640687119286, 3.9999999999999996, 0]

# calculate multiple molecule
>>> mols = [Chem.MolFromSmiles(smi) for smi in ['c1ccccc1Cl', 'c1ccccc1O', 'c1ccccc1N']]

# as pandas
>>> df = calc.pandas(mols)
>>> df['SLogP']
0    2.3400
1    1.3922
2    1.2688
Name: SLogP, dtype: float64

Additional Examples

see examples on GitHub.

Citation

Please cite the original publication describing mordred and this repository specifically. Moriwaki H, Tian Y-S, Kawashita N, Takagi T (2018) Mordred: a molecular descriptor calculator. Journal of Cheminformatics 10:4 . doi: 10.1186/s13321-018-0258-y

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mordredcommunity-2.0.6.tar.gz (130.8 kB view details)

Uploaded Source

Built Distribution

mordredcommunity-2.0.6-py3-none-any.whl (176.0 kB view details)

Uploaded Python 3

File details

Details for the file mordredcommunity-2.0.6.tar.gz.

File metadata

  • Download URL: mordredcommunity-2.0.6.tar.gz
  • Upload date:
  • Size: 130.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for mordredcommunity-2.0.6.tar.gz
Algorithm Hash digest
SHA256 a697866278b606b25012e62492e9e17ace50355618edb8686090365336cda3df
MD5 e9031786be3c59135daebcf3a7bc0677
BLAKE2b-256 638a5abd14239ee48511de1d14f7ed3ea01b226cf5d3cb7189b125be87e83d88

See more details on using hashes here.

File details

Details for the file mordredcommunity-2.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for mordredcommunity-2.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 116b484a98d1af74025ed308d0922e43ea9b8857e596702a320ef0d4b2db6296
MD5 d77f525f95eb33ec49fd70f07f6566e7
BLAKE2b-256 f5e87d1dfd89c39554298939cfdd20cc76aeef6c4404ab32fec1965b0192113c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page