Skip to main content

A minimal asynchronous database object relational mapper

Project description

Build status image Coverage Status

A minimal asynchronous database object relational mapper that supports transaction, connection pool and migration.

Currently supports PostgreSQL with asyncpg.

Install

Requires Python 3.10+

pip install morm

Init project

Run morm_admin init -p app in your project directory to make some default files such as _morm_config_.py, mgr.py

Edit morm_config.py to put the correct database credentials:

from morm.db import Pool

DB_POOL = Pool(
    dsn='postgres://',
    host='localhost',
    port=5432,
    user='user',
    password='pass',
    database='db_name',
    min_size=10,
    max_size=90,
)

This will create and open an asyncpg pool which will be automatically closed at exit.

Model

It's more than a good practice to define a Base model first:

from morm.pg_models import BaseCommon as Model

# BaseCommon defines id, created_at and updated_at fields.
# While pg_models.Base defines only id.

class Base(Model):
    class Meta:
        abstract = True

Then a minimal model could look like this:

from morm.fields import Field

class User(Base):
    name = Field('varchar(65)')
    email = Field('varchar(255)')
    password = Field('varchar(255)')

Advanced models could look like this:

import random

def get_rand():
    return random.randint(1, 9)

class User(Base):
    class Meta:
        db_table = 'myapp_user'
        abstract = False    # default is False
        proxy = False       # default is False
        # ... etc...
        # see morm.meta.Meta for supported meta attributes.

    name = Field('varchar(65)')
    email = Field('varchar(255)')
    password = Field('varchar(255)')
    profession = Field('varchar(255)', default='Unknown')
    random = Field('integer', default=get_rand) # function can be default

class UserProfile(User):
    class Meta:
        proxy = True
        exclude_fields_down = ('password',) # exclude sensitive fields in retrieval
        # this will also exclude this field from swagger docs if you are
        # using our fastAPI framework

Rules for field names

  1. Must not start with an underscore (_). You can set arbitrary variables to the model instance with names starting with underscores; normally you can not set any variable to a model instance. Names not starting with an underscore are all expected to be field names, variables or methods that are defined during class definition.
  2. _<name>_ such constructions are reserved for pre-defined overridable methods such as _pre_save_, _post_save_, etc..
  3. Name Meta is reserved to be a class that contains configuration of the model for both model and model instance.

Initialize a model instance

keyword arguments initialize corresponding fields according to the keys.

Positional arguments must be dictionaries of keys and values.

Example:

User(name='John Doe', profession='Teacher')
User({'name': 'John Doe', 'profession': 'Teacher'})
User({'name': 'John Doe', 'profession': 'Teacher'}, age=34)

Validations

You can setup validation directly on the attribute or define a class method named _clean_fieldname to run a validation and change the value before it is inserted or updated into the db. These two types of validations work a bit differently:

  1. Validation on field attribute: Can not change the value, must return True or False. It has more strict behavior than the _clean_* method for the attribute. This will run even when you are setting the value of an attribute by model instance, e.g user.islive = 'live' this would throw ValueError if you set the validator as islive = Field('boolean', validator=lambda x: x is None or isinstance(x, bool)).
  2. Validation with _clean_{fieldName} method: Can change the value and must return the final value. It is only applied during insert or update using the model query handler (using save or update or insert).

Example:

class User(Base):
    class Meta:
        db_table = 'myapp_user'
        abstract = False    # default is False
        proxy = False       # default is False
        # ... etc...
        # see morm.meta.Meta for supported meta attributes.

    name = Field('varchar(65)')
    email = Field('varchar(255)')
    # restrict your devs to things such as user.password = '1234567' # <8 chars
    password = Field('varchar(255)', validator=lambda x: x is None or len(x)>=8)
    profession = Field('varchar(255)', default='Unknown')
    random = Field('integer', default=get_rand) # function can be default

    def _clean_password(self, v: str):
        if not v: return v # password can be empty (e.g for third party login)
        if len(v) < 8:
            raise ValueError(f"Password must be at least 8 characters long.")
        if len(v) > 100:
            raise ValueError(f"Password must be at most 100 characters long.")
        # password should contain at least one uppercase, one lowercase, one number, and one special character
        if not any(c.isupper() for c in v):
            raise ValueError(f"Password must contain at least one uppercase letter.")
        if not any(c.islower() for c in v):
            raise ValueError(f"Password must contain at least one lowercase letter.")
        if not any(c.isdigit() for c in v):
            raise ValueError(f"Password must contain at least one number.")
        if not any(c in '!@#$%^&*()-_=+[]{}|;:,.<>?/~' for c in v):
            raise ValueError(f"Password must contain at least one special character.")
        return v

Special Model Meta attribute f:

You can access field names from ModelClass.Meta.f.

This allows a spell-safe way to write the field names. If you misspell the name, you will get AttributeError.

f = User.Meta.f
my_data = {
    f.name: 'John Doe',         # safe from spelling mistake
    f.profession: 'Teacher',    # safe from spelling mistake
    'hobby': 'Gardenning',      # unsafe from spelling mistake
}

Model Meta attributes

  • db_table (str): db table name,
  • abstract (bool): Whether it is an abstract model. Abstract models do not have db table and are used as base models.
  • pk (str): Primary key. Defaults to 'id',
  • proxy (bool): Whether it is a proxy model. Defaults to False. Proxy models inherit everything. This is only to have different pythonic behavior of a model. Proxy models can not define new fields and they do not have separate db table but share the same db table as their parents. Proxy setting is always inherited by child model, thus If you want to turn a child model non-proxy, set the proxy setting in its Meta class.
  • ordering (Tuple[str]): Ordering. Example: ('name', '-price'), where name is ascending and price is in descending order.
  • fields_up (Tuple[str]): These fields only will be taken to update or save data onto db. Empty tuple means no restriction.
  • fields_down (Tuple[str]): These fields only will be taken to select/retrieve data from db. Empty tuple means no restriction.
  • exclude_fields_up (Tuple[str]): Exclude these fields when updating data to db. Empty tuple means no restriction.
  • exclude_fields_down (Tuple[str]): Exclude these fields when retrieving data from db. Empty tuple means no restriction.
  • exclude_values_up (Dict[str, Tuple[Any]]): Exclude fields with these values when updating. Empty dict and empty tuple means no restriction. Example: {'': (None,), 'price': (0,)} when field name is left empty ('') that criteria will be applied to all fields.
  • exclude_values_down (Dict[str, Tuple[Any]]): Exclude fields with these values when retrieving data. Empty dict and empty tuple means no restriction. Example: {'': (None,), 'price': (0,)} when field name is left empty ('') that criteria will be applied to all fields.
  • f: Access field names.

CRUD

All available database operations are exposed through DB object.

Example:

from morm.db import DB

db = DB(DB_POOL) # get a db handle.

# Create
user = User(name='John Doe', profession='Teacher')
await db.save(user)

# Read
user5 = await db(User).get(5)

# Update
user5.age = 30
await db.save(user5)

# Delete
await db.delete(user5)

Get

The get method has the signature get(*vals, col='', comp='=$1').

It gets the first row found by column and value. If col is not given, it defaults to the primary key (pk) of the model. If comparison is not given, it defaults to =$1

Example:

from morm.db import DB

db = DB(DB_POOL) # get a db handle.

# get by pk:
user5 = await db(User).get(5)

# price between 5 and 2000
user = await db(User).get(5, 2000, col='price', comp='BETWEEN $1 AND $2')

Filter

from morm.db import DB

db = DB(DB_POOL) # get a db handle.

f = User.Meta.f
user_list = await db(User).qfilter().q(f'"{f.profession}"=$1', 'Teacher').fetch()
user_list = await db(User).qfilter().qc(f.profession, '=$1', 'Teacher').fetch()

It is safer to use ${qh.c} instead of $1, ${qh.c+1} instead of $2, etc.. :

from morm.db import DB

db = DB(DB_POOL) # get a db handle.

qh = db(User)
user_list = await qh.qfilter()\
                    .q(f'{qh.f.profession} = ${qh.c} AND {qh.f.age} = ${qh.c+1}', 'Teacher', 30)\
                    .fetch()

Query

Calling db(Model) gives you a model query handler which has several query methods to help you make queries.

Use .q(query, *args) method to make queries with positional arguments. If you want named arguments, use the uderscored version of these methods. For example, q(query, *args) has an underscored version q_(query, *args, **kwargs) that can take named arguments.

You can add a long query part by part:

from morm.db import DB

db = DB(DB_POOL) # get a db handle.
qh = db(User)   # get a query handle.

query, args = qh.q(f'SELECT * FROM {qh.db_table}')\
                .q(f'WHERE {qh.f.profession} = ${qh.c}', 'Teacher')\
                .q_(f'AND {qh.f.age} = :age', age=30)\
                .getq()
print(query, args)
# fetch:
user_list = await qh.fetch()

The q family of methods (q, qc, qu etc..) can be used to build a query step by step. These methods can be chained together to break down the query building in multiple steps.

Several properties are available to get information of the model such as:

  1. qh.db_table: Quoted table name e.g "my_user_table".
  2. qh.pk: Quoted primary key name e.g "id".
  3. qh.ordering: ordering e.g "price" ASC, "quantity" DESC.
  4. qh.f.<field_name>: quoted field names e.g"profession".
  5. qh.c: Current available position for positional argument (Instead of hardcoded $1, $2, use f'${qh.c}', f'${qh.c+1}').

qh.c is a counter that gives an integer representing the last existing argument position plus 1.

reset() can be called to reset the query to start a new.

To execute a query, you need to run one of the execution methods : fetch, fetchrow, fetchval, execute.

Notable convenience methods:

  • qupdate(data): Initialize a update query for data
  • qfilter(): Initialize a filter query upto WHERE clasue.
  • get(pkval): Get an item by primary key.

Transaction

from morm.db import Transaction

async with Transaction(DB_POOL) as tdb:
    # use tdb just like you use db
    user6 = await tdb(User).get(6)
    user6.age = 34
    await tdb.save(user6)
    user5 = await tdb(User).get(5)
    user5.age = 34
    await tdb.save(user5)

Indexing

You can use the index: Tuple[str] | str | None parameter to define what type/s of indexing should be applied to the field. Examples:

class User(Base):
    parent_id = Field('integer', index='hash')
    username = Field('varchar(65)', index='hash,btree') # two indexes
    email = Field('varchar(255)', index=('hash', 'btree')) # tuple is allowed as well
    perms = Field('integer[]', index='gin:gin__int_ops')

If you want to remove the indexing, Add a - minus sign to the specific index and then run migration. After that you can safely remove the index keyword, e.g:

--- parent_id = Field('integer', index='-hash')
===$ ./mgr makemigrations
===$ ./mgr migrate
>>> parent_id = Field('integer', index='') # now you can remove the hash

Field/Model grouping

You can group your model fields, for example, you can define groups like admin, mod, staff, normal and make your model fields organized into these groups. This will enable you to implement complex field level organized access controls. You can say, that the password field belongs to the admin group, then subscriptions field to mod group and then active_subscriptions to staff group.

class UserAdmin(Base):
    class Meta:
        groups = ('admin',) # this model belongs to the admin group
    password = Field('varchar(100)', groups=('admin',))
    subscriptions = Field('integer[]', groups=('mod',))
    active_subscriptions = Field('integer[]', groups=('staff',))

Sudo (Elevated access to fields)

We believe writing to certain fields or areas of your system should require elevated access.

Field can take an argument sudo that means elevated access required. IF sudo is set to true for some field, you will not be able to write to this field using the ModelQuery (direct raw query can still be performed) unless your db instance is set to have sudo=True as well:

db = DB(DB_POOL, sudo=True)

Migration

Migration is a new feature and only forward migrations are supported as of now.

You should have created the morm_config.py and mgr.py file with morm_admin init.

List all the models that you want migration for in mgr.py. You will know how to edit it once you open it.

Then, to make migration files, run:

python mgr.py makemigrations

This will ask you for confirmation on each changes, add -y flag to bypass this.

run

python mgr.py migrate

to apply the migrations.

Adding data into migration

Go into migration directory after making the migration files and look for the .py files inside queue directory. Identify current migration files, open them for edit. You will find something similar to this:

import morm

class MigrationRunner(morm.migration.MigrationRunner):
    """Run migration with pre and after steps.
    """
    migration_query = """{migration_query}"""

    # async def run_before(self):
    #     """Run before migration

    #     self.tdb is the db handle (transaction)
    #     self.model is the model class
    #     """
    #     dbm = self.tdb(self.model)
    #     # # Example
    #     # dbm.q('SOME QUERY TO SET "column_1"=$1', 'some_value')
    #     # await dbm.execute()
    #     # # etc..

    # async def run_after(self):
    #     """Run after migration.

    #     self.tdb is the db handle (transaction)
    #     self.model is the model class
    #     """
    #     dbm = self.tdb(self.model)
    #     # # Example
    #     # dbm.q('SOME QUERY TO SET "column_1"=$1', 'some_value')
    #     # await dbm.execute()
    #     # # etc..

As you can see, there are run_before and run_after hooks. You can use them to make custom queries before and after the migration query. You can even modify the migration query itself.

Example:

...
    async def run_before(self):
        """Run before migration

        self.tdb is the db handle (transaction)
        self.model is the model class
        """
        user0 = self.model(name='John Doe', profession='Software Engineer', age=45)
        await self.tdb.save(user0)
...

Do not do these

  1. Do not delete migration files manually, use python mgr.py delete_migration_files <start_index> <end_index> command instead.
  2. Do not modify mutable values in-place e.g user.addresses.append('Some address'), instead set the value: user.addresses = [*user.addresses, 'Some address'] so that the __setattr__ is called, on which morm depends for checking changed fields for the db.save() and related methods.

Initialize a FastAPI project

Run init_fap app in your project root. It will create a directory structure like this:

├── app
│   ├── core
│   │   ├── __init__.py
│   │   ├── models
│   │   │   ├── base.py
│   │   │   ├── __init__.py
│   │   │   └── user.py
│   │   ├── schemas
│   │   │   └── __init__.py
│   │   └── settings.py
│   ├── __init__.py
│   ├── main.py
│   ├── tests
│   │   ├── __init__.py
│   │   └── v1
│   │       ├── __init__.py
│   │       └── test_sample.py
│   ├── v1
│   │   ├── dependencies
│   │   │   └── __init__.py
│   │   ├── __init__.py
│   │   ├── internal
│   │   │   └── __init__.py
│   │   └── routers
│   │       ├── __init__.py
│   │       └── root.py
│   └── workers.py
├── app.service
├── .gitignore
├── gunicorn.sh
├── mgr
├── mgr.py
├── _morm_config_.py
├── nginx
│   ├── app
│   └── default
├── requirements.txt
├── run
└── vact

You can run the dev app with ./run or the production app with ./gunicorn.sh.

To run the production app as a service with systemctl start app, copy the app.service to /etc/systemd/system

Notes:

  • You can setup your venv path in the vact file. To activate the venv with all the environment vars, just run . vact.
  • An environment file .env_APP is created in your home directory containing dev and production environments.

Pydantic support

You can get pydantic model from any morm model using the _pydantic_ method, e.g User._pydantic_() would give you the pydantic version of your User model. The _pydantic_() method supports a few parameters to customize the generated pydantic model:

  • up=False: Defines if the model should be for up (update into database) or down (retrieval from database).
  • suffix=None: You can add a suffix to the name of the generated pydantic model.
  • include_validators=None: Whether the validators defined in each field (with validator parameter) should be added as pydantic validators. When None (which is default) validators will be included for data update into database (i.e for up=True). Note that, the model field validators return True or False, while pydantic validators return the value, this conversion is automatically added internally while generating the pydantic model.

If you are using our FastAPI framework, generating good docs for user data retrieval using the User model would be as simple as:

@router.get('/crud/{model}', responses=Res.schema_all(User._pydantic_())
async def get(request: Request, model: str, vals = '', col: str='', comp: str='=$1'):
     if some_authentication_error:
        raise Res(status=Res.Status.unauthorized, errors=['Invalid Credentials!']) # throws a correct HTTP error with additional error message
    ...
    return Res(user)

The above will define all common response types: 200, 401, 403, etc.. and the 200 success response will show an example with correct data types from your User model and will show only the fields that are allowed to be shown (controlled with exclude_fields_down or fields_down in the User.Meta).

JSON handling

It may seem tempting to add json and jsonb support with asyncpg.Connection.set_type_codec() method, but we have not provided any option to use this method easily in morm, as it turned out to be making the queries very very slow. If you want to handle json, better add a _clean_{field} method in your model and do the conversion there:

class User(Base):
    settings = Field('jsonb')
    ...

    def _clean_settings(self, v):
        if not isinstance(v, str):
            v = json.dumps(v)
        return v

If you want to have it converted to json during data retrieval from database as well, pass a validator which should return False if it is not json, and then pass a modifier in the field to do the conversion. Do note that modifier only runs if validator fails. Thus you will set and get the value as json (list or dict) and the _clean_settings will covert it back to text during database insert or update.

class User(Base):
    settings = Field('jsonb', validator=lambda x: isinstance(x, list|dict), modifier=lambda x: json.loads(x))
    ...

    def _clean_settings(self, v):
        if not isinstance(v, str):
            v = json.dumps(v)
        return v

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

morm-2.6.0.tar.gz (67.0 kB view details)

Uploaded Source

Built Distribution

morm-2.6.0-py3-none-any.whl (55.9 kB view details)

Uploaded Python 3

File details

Details for the file morm-2.6.0.tar.gz.

File metadata

  • Download URL: morm-2.6.0.tar.gz
  • Upload date:
  • Size: 67.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.6

File hashes

Hashes for morm-2.6.0.tar.gz
Algorithm Hash digest
SHA256 7713f147717e96b277b0562e5d9d89b3b1b367eca8e8665d4b828267dcf8fcba
MD5 f2999935ba563147feeb72eee0ddc590
BLAKE2b-256 675386687278e17fa041bd93d32dcda21c73735ab1d5c972cf13834facf40759

See more details on using hashes here.

File details

Details for the file morm-2.6.0-py3-none-any.whl.

File metadata

  • Download URL: morm-2.6.0-py3-none-any.whl
  • Upload date:
  • Size: 55.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.1.dev0+g94f810c.d20240510 CPython/3.12.6

File hashes

Hashes for morm-2.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 70abb762b55f100e13622fe84022827c4311e61f738760b6d571affb3484413e
MD5 f537ef94882c3caba79b39d8b42cc7ea
BLAKE2b-256 62f881e6b0b506e32409b6b37079f7250564539df6c276d8dce258f44e76bef9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page