Skip to main content

Powerful [R2]RML engine to create RDF knowledge graphs from heterogeneous data sources.

Project description

morph

License DOI Latest PyPI version Python Version PyPI status build Documentation Status Open In Colab

Morph-KGC is an engine that constructs RDF knowledge graphs from heterogeneous data sources with the R2RML and RML mapping languages. Morph-KGC is built on top of pandas and it leverages mapping partitions to significantly reduce execution times and memory consumption for large data sources.

Features :sparkles:

Documentation :bookmark_tabs:

Read the documentation.

Tutorial :woman_teacher:

Learn quickly with the tutorial in Google Colaboratory!

Getting Started :rocket:

PyPi is the fastest way to install Morph-KGC:

pip install morph-kgc

We recommend to use virtual environments to install Morph-KGC.

To run the engine via command line you just need to execute the following:

python3 -m morph_kgc config.ini

Check the documentation to see how to generate the configuration INI file. Here you can also see an example INI file.

It is also possible to run Morph-KGC as a library with RDFLib and Oxigraph:

import morph_kgc

# generate the triples and load them to an RDFLib graph
g_rdflib = morph_kgc.materialize('/path/to/config.ini')
# work with the RDFLib graph
q_res = g_rdflib.query('SELECT DISTINCT ?classes WHERE { ?s a ?classes }')

# generate the triples and load them to Oxigraph
g_oxigraph = morph_kgc.materialize_oxigraph('/path/to/config.ini')
# work with Oxigraph
q_res = g_oxigraph.query('SELECT DISTINCT ?classes WHERE { ?s a ?classes }')

# the methods above also accept the config as a string
config = """
            [DataSource1]
            mappings: /path/to/mapping/mapping_file.rml.ttl
            db_url: mysql+pymysql://user:password@localhost:3306/db_name
         """
g_rdflib = morph_kgc.materialize(config)

License :unlock:

Morph-KGC is available under the Apache License 2.0.

Author & Contact :mailbox_with_mail:

Ontology Engineering Group, Universidad Politécnica de Madrid.

Citing :speech_balloon:

If you used Morph-KGC in your work, please cite the SWJ paper:

@article{arenas2024morph,
  title     = {{Morph-KGC: Scalable knowledge graph materialization with mapping partitions}},
  author    = {Arenas-Guerrero, Julián and Chaves-Fraga, David and Toledo, Jhon and Pérez, María S. and Corcho, Oscar},
  journal   = {Semantic Web},
  publisher = {IOS Press},
  issn      = {2210-4968},
  year      = {2024},
  doi       = {10.3233/SW-223135},
  volume    = {15},
  number    = {1},
  pages     = {1-20}
}

Sponsor :shield:

BASF

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

morph_kgc-2.8.0.tar.gz (218.9 kB view details)

Uploaded Source

Built Distribution

morph_kgc-2.8.0-py3-none-any.whl (55.3 kB view details)

Uploaded Python 3

File details

Details for the file morph_kgc-2.8.0.tar.gz.

File metadata

  • Download URL: morph_kgc-2.8.0.tar.gz
  • Upload date:
  • Size: 218.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for morph_kgc-2.8.0.tar.gz
Algorithm Hash digest
SHA256 1d95eeaa01fa9a272444e0d18f04151ff2be769bf9c816228fcb98f3f4e35b3c
MD5 776f5d4afdf606f96fdc44ab98c7b2a7
BLAKE2b-256 dcfd8abfb6aa0dafd1b06939268d7380df3de36609b373d06e50ac219834fdbf

See more details on using hashes here.

File details

Details for the file morph_kgc-2.8.0-py3-none-any.whl.

File metadata

  • Download URL: morph_kgc-2.8.0-py3-none-any.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for morph_kgc-2.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d47624de183db6a78b41e8bae4a0264d6e8f908c17137017ab3435e28a66f46b
MD5 6a78b043b44ed7e182132a46203c517c
BLAKE2b-256 da5337a1044855158daae154f7e41fe58947d37b70e00c3a3dee346dc7d39591

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page