Skip to main content

A Library For Generating Morphological Semantic Segmentation Maps of Astronomical Images

Project description

https://cdn.jsdelivr.net/gh/morpheus-project/morpheus/morpheus.svg
https://travis-ci.com/morpheus-project/morpheus.svg?branch=master https://codecov.io/gh/morpheus-project/morpheus/branch/master/graph/badge.svg https://img.shields.io/badge/code%20style-black-000000.svg https://img.shields.io/badge/python-3.6-blue.svg https://readthedocs.org/projects/morpheus-astro/badge/?version=latest

Morpheus is a neural network model used to generate pixel level morphological classifications for astronomical sources. This model can be used to generate segmentation maps or to inform other photometric measurements with granular morphological information.

Installation

Morpheus is implemented using Tensorflow. Tensorflow is listed in the dependecies for the package. If you want to use an accelerated version of Tensorflow, for example, to take advantage of GPU acceleration, then be sure to install it before you install Morpheus.

pip install morpheus-astro

Usage

The main way to interact with Morpheus is by using the morpheus.classifier.Classifier class. Using this class you can classify astronomical images in 2 ways:

  1. Using classify_arrays to classify numpy arrays.

from morpheus.classifier import Classifier
from morpheus.data import example

h, j, v, z = example.get_sample()
morphs = Classifier.classify_arrays(h=h, j=j, v=v, z=z)

The output that is returned is a dictionary where the keys are the morphological classes: spheroid, disk, irregular, point source, and background and the values are the corresponding numpy arrays.

  1. Using classify_files to classify FITS files:

from morpheus.classifier import Classifier
from morpheus.data import example

# this saves the sample numpy arrays as FITS files in 'out_dir'
example.get_sample(out_dir='.')
h, j, v, z = [f'{band}.fits' for band in 'hjvz']

morphs = Classifier.classify_files(h=h, j=j, v=v, z=z)

Using FITS files can be useful for classifying files that are too large to fit into memory. If an image is too large to fit into memory, then specify the out_dir argument and the outputs will be saved there rather than returned.

from morpheus.classifier import Classifier
from morpheus.data import example

# this saves the sample numpy arrays as fits files in 'out_dir'
example.get_sample(out_dir='.')
h, j, v, z = [f'{band}.fits' for band in 'hjvz']

Classifier.classify_files(h=h, j=j, v=v, z=z, out_dir='.')

If you’re classifying a large image and have multiple NVIDIA GPUs on the same machine available the image can be classified in parallel using the gpus argument. The image split evenly along the first axis and then handed off to subprocess to classify the subset of the image, after which, the image is stitched back together.

from morpheus.classifier import Classifier

# h, j, v, and, z are strings that point to a large image

# gpus should be an integer list containing the GPU ids for the GPUs that
# you want to use to classify the images. You can get these values by
# calling 'nvidia-smi'
gpus = [0, 1]

Classifier.classify_files(h=h, j=j, v=v, z=z, out_dir='.', gpus=gpus)

Demo

Try it out on Google Colab!

Documentation

https://morpheus-astro.readthedocs.io/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

morpheus-astro-0.2.0.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

morpheus_astro-0.2.0-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file morpheus-astro-0.2.0.tar.gz.

File metadata

  • Download URL: morpheus-astro-0.2.0.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.7

File hashes

Hashes for morpheus-astro-0.2.0.tar.gz
Algorithm Hash digest
SHA256 76f2f21130edcea09783d664b967b9126bd0621550ba4ebda8e1378b8918a283
MD5 df5051067b597f09bed208ecc7abac6d
BLAKE2b-256 fa85e17b87e5c3826159427f62d7b5eb28ea2843f536c575012126b3060b17b4

See more details on using hashes here.

File details

Details for the file morpheus_astro-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: morpheus_astro-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.7

File hashes

Hashes for morpheus_astro-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d926be85db4001c4493f437f843d6a1ad170cce31407a80ee0ed3930ec0a6caf
MD5 446007df6bd51d515cc75e8a14f10a4b
BLAKE2b-256 c84661db494a698fb3b9d09607351fa8d1e5861eaca2b7950ffea06e91f8b4ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page