Skip to main content

A small example package

Project description

Title

Subtitle

Build Status

Objective: To make have some fun, and maybe can make data life more easy a bit Some basic Python commands are:

Input [1]:

from morris_lee_package import morris_coding as m
df =m.get_df()
df

Output [1]:

+----+--------+--------+----------+--------+
|    |   col1 |   col2 | col3     |   col4 |
+====+========+========+==========+========+
|  0 |      1 |      3 | dog      |      9 |
+----+--------+--------+----------+--------+
|  1 |      2 |      4 |          |      8 |
+----+--------+--------+----------+--------+
|  2 |      3 |      5 | dog      |    nan |
+----+--------+--------+----------+--------+
|  3 |      4 |      6 | elephant |      6 |
+----+--------+--------+----------+--------+
|  4 |      5 |      7 | dragon   |      5 |
+----+--------+--------+----------+--------+

Input [2]:

# To identify whether there is any null values:
m.null(df,'df')

# To easy print dimension of a dataframe
m.shape(df, 'df')

Output [2]:

STATUS: There is null value in dataframe
STATUS: Nulls of df = {'col3': '1 (20.0%)', 'col4': '1 (20.0%)'} of total 5
STATUS: Dimension of "df" = (5, 4)

Input [3]:

# To identify whether there is any duplicate values in a column:
m.duplicate(df, 'col3')

Output [3]:

STATUS: There are 1 duplicate values in the column of "col3"

Input [4]:

# To easy print value counts of a column, including also percentage:
m.vc(df, 'col3')

Output [4]:

+----------+---------+------------------+
| col3     |   count |   percentage (%) |
+==========+=========+==================+
| dog      |       2 |               50 |
+----------+---------+------------------+
| dragon   |       1 |               25 |
+----------+---------+------------------+
| elephant |       1 |               25 |
+----------+---------+------------------+

Input [5]:

# To easy drop a column:
m.drop(df, 'col3')

Output [5]:

+----+--------+--------+--------+
|    |   col1 |   col2 |   col4 |
+====+========+========+========+
|  0 |      1 |      3 |      9 |
+----+--------+--------+--------+
|  1 |      2 |      4 |      8 |
+----+--------+--------+--------+
|  2 |      3 |      5 |    nan |
+----+--------+--------+--------+
|  3 |      4 |      6 |      6 |
+----+--------+--------+--------+
|  4 |      5 |      7 |      5 |
+----+--------+--------+--------+

Input [6]:

# To easy one_hot_encode a column:
m.one_hot_encode(df, 'col3')

Output [6]:

+----+--------+--------+--------+-------+----------+------------+
|    |   col1 |   col2 |   col4 |   dog |   dragon |   elephant |
+====+========+========+========+=======+==========+============+
|  0 |      1 |      3 |      9 |     1 |        0 |          0 |
+----+--------+--------+--------+-------+----------+------------+
|  1 |      2 |      4 |      8 |     0 |        0 |          0 |
+----+--------+--------+--------+-------+----------+------------+
|  2 |      3 |      5 |    nan |     1 |        0 |          0 |
+----+--------+--------+--------+-------+----------+------------+
|  3 |      4 |      6 |      6 |     0 |        0 |          1 |
+----+--------+--------+--------+-------+----------+------------+
|  4 |      5 |      7 |      5 |     0 |        1 |          0 |
+----+--------+--------+--------+-------+----------+------------+

This is contributed by Morris Lee.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

morris-learning-0.0.2.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

morris_learning-0.0.2-py3-none-any.whl (4.8 kB view details)

Uploaded Python 3

File details

Details for the file morris-learning-0.0.2.tar.gz.

File metadata

  • Download URL: morris-learning-0.0.2.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for morris-learning-0.0.2.tar.gz
Algorithm Hash digest
SHA256 dfc9e6ae82ee14ceb3715a00ffd3b1d32e55491d6f3e8f44f367c94a909235b7
MD5 bd87fd5bba51f66ffead2827583c3ae8
BLAKE2b-256 43fa9d07a1a24f7424503873dc2fcab5c2429ac48a13a391de023347decca74b

See more details on using hashes here.

File details

Details for the file morris_learning-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for morris_learning-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 289b4407a7585220dcc88bcd3b2f60b20eac498c6e93a07cec4a812ce637f592
MD5 13a1a9e7a14df0fd6daf1cbdd6d7271d
BLAKE2b-256 f59a3fddf4ef796ff5df1ecedb91a67cbd8da1b98dea26ac6b6073d2c7d65847

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page