Skip to main content

A tool to simply common data analysis

Project description

Title

Subtitle

Objective: To make common analysis easier and more expressive.

To install the package

pip install morris-learning==0.0.2

Let me show you how the package works

Input [1]:

from morris_lee_package import morris_coding as m
df =m.get_df()
df

Output [1]:

+----+--------+--------+----------+--------+
|    |   col1 |   col2 | col3     |   col4 |
+====+========+========+==========+========+
|  0 |      1 |      3 | dog      |      9 |
+----+--------+--------+----------+--------+
|  1 |      2 |      4 |          |      8 |
+----+--------+--------+----------+--------+
|  2 |      3 |      5 | dog      |    nan |
+----+--------+--------+----------+--------+
|  3 |      4 |      6 | elephant |      6 |
+----+--------+--------+----------+--------+
|  4 |      5 |      7 | dragon   |      5 |
+----+--------+--------+----------+--------+

Input [2]:

# To identify whether there is any null values:
m.null(df,'df')

# To easy print dimension of a dataframe
m.shape(df, 'df')

Output [2]:

STATUS: There is null value in dataframe
STATUS: Nulls of df = {'col3': '1 (20.0%)', 'col4': '1 (20.0%)'} of total 5
STATUS: Dimension of "df" = (5, 4)

Input [3]:

# To identify whether there is any duplicate values in a column:
m.duplicate(df, 'col3')

Output [3]:

STATUS: There are 1 duplicate values in the column of "col3"

Input [4]:

# To easy print value counts of a column, including also percentage:
m.vc(df, 'col3')

Output [4]:

+----------+---------+------------------+
| col3     |   count |   percentage (%) |
+==========+=========+==================+
| dog      |       2 |               50 |
+----------+---------+------------------+
| dragon   |       1 |               25 |
+----------+---------+------------------+
| elephant |       1 |               25 |
+----------+---------+------------------+

Input [5]:

# To easy drop a column:
m.drop(df, 'col3')

Output [5]:

+----+--------+--------+--------+
|    |   col1 |   col2 |   col4 |
+====+========+========+========+
|  0 |      1 |      3 |      9 |
+----+--------+--------+--------+
|  1 |      2 |      4 |      8 |
+----+--------+--------+--------+
|  2 |      3 |      5 |    nan |
+----+--------+--------+--------+
|  3 |      4 |      6 |      6 |
+----+--------+--------+--------+
|  4 |      5 |      7 |      5 |
+----+--------+--------+--------+

Input [6]:

# To easy one_hot_encode a column:
m.one_hot_encode(df, 'col3')

Output [6]:

+----+--------+--------+--------+-------+----------+------------+
|    |   col1 |   col2 |   col4 |   dog |   dragon |   elephant |
+====+========+========+========+=======+==========+============+
|  0 |      1 |      3 |      9 |     1 |        0 |          0 |
+----+--------+--------+--------+-------+----------+------------+
|  1 |      2 |      4 |      8 |     0 |        0 |          0 |
+----+--------+--------+--------+-------+----------+------------+
|  2 |      3 |      5 |    nan |     1 |        0 |          0 |
+----+--------+--------+--------+-------+----------+------------+
|  3 |      4 |      6 |      6 |     0 |        0 |          1 |
+----+--------+--------+--------+-------+----------+------------+
|  4 |      5 |      7 |      5 |     0 |        1 |          0 |
+----+--------+--------+--------+-------+----------+------------+

Merging -A simplified and smarter way to merge your dataset

mergex(df1 ,df2, column1, column2, df1_name=None, df2_name=None)

This is contributed by Morris Lee.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

morris-learning-0.0.3.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

morris_learning-0.0.3-py3-none-any.whl (4.8 kB view details)

Uploaded Python 3

File details

Details for the file morris-learning-0.0.3.tar.gz.

File metadata

  • Download URL: morris-learning-0.0.3.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for morris-learning-0.0.3.tar.gz
Algorithm Hash digest
SHA256 6655290c42dd7d1310e9aac0ebd0fbce7c722ed81a917054091b2b793908290f
MD5 041d6454b4eb2504a3b1aa793f000bf1
BLAKE2b-256 92636e1d5e81fe63d60e8827ce135c28acb7b7d6dabf2543b8a1514eb30d5dfd

See more details on using hashes here.

File details

Details for the file morris_learning-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for morris_learning-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 8aab754f57d30ee239a01139a3f7c667dd57895684755cd783ee8b6c7e3b6593
MD5 3110957f578e3af3d284ec0d72b9f988
BLAKE2b-256 2f09ab5fbfdd4bc1f33ed0c9660e1117ac55f610dfdaf7d49069da903950460d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page