Skip to main content

A tool to simply common data analysis

Project description

A package to make common data analysis easier

Objective: To make common analysis easier and more expressive.

To install the package

pip install morris-learning==0.0.2

Let me show you how the package works

Input [1]:

from morris_lee_package import morris_coding as m
df =m.get_df()
df

Output [1]:

+----+--------+--------+----------+--------+
|    |   col1 |   col2 | col3     |   col4 |
+====+========+========+==========+========+
|  0 |      1 |      3 | dog      |      9 |
+----+--------+--------+----------+--------+
|  1 |      2 |      4 |          |      8 |
+----+--------+--------+----------+--------+
|  2 |      3 |      5 | dog      |    nan |
+----+--------+--------+----------+--------+
|  3 |      4 |      6 | elephant |      6 |
+----+--------+--------+----------+--------+
|  4 |      5 |      7 | dragon   |      5 |
+----+--------+--------+----------+--------+

Input [2]:

# To identify whether there is any null values:
m.null(df,'df')

# To easy print dimension of a dataframe
m.shape(df, 'df')

Output [2]:

STATUS: There is null value in dataframe
STATUS: Nulls of df = {'col3': '1 (20.0%)', 'col4': '1 (20.0%)'} of total 5
STATUS: Dimension of "df" = (5, 4)

Input [3]:

# To identify whether there is any duplicate values in a column:
m.duplicate(df, 'col3')

Output [3]:

STATUS: There are 1 duplicate values in the column of "col3"

Input [4]:

# To easy print value counts of a column, including also percentage:
m.vc(df, 'col3')

Output [4]:

+----------+---------+------------------+
| col3     |   count |   percentage (%) |
+==========+=========+==================+
| dog      |       2 |               50 |
+----------+---------+------------------+
| dragon   |       1 |               25 |
+----------+---------+------------------+
| elephant |       1 |               25 |
+----------+---------+------------------+

Input [5]:

# To easy drop a column:
m.drop(df, 'col3')

Output [5]:

+----+--------+--------+--------+
|    |   col1 |   col2 |   col4 |
+====+========+========+========+
|  0 |      1 |      3 |      9 |
+----+--------+--------+--------+
|  1 |      2 |      4 |      8 |
+----+--------+--------+--------+
|  2 |      3 |      5 |    nan |
+----+--------+--------+--------+
|  3 |      4 |      6 |      6 |
+----+--------+--------+--------+
|  4 |      5 |      7 |      5 |
+----+--------+--------+--------+

Input [6]:

# To easy one_hot_encode a column:
m.one_hot_encode(df, 'col3')

Output [6]:

+----+--------+--------+--------+-------+----------+------------+
|    |   col1 |   col2 |   col4 |   dog |   dragon |   elephant |
+====+========+========+========+=======+==========+============+
|  0 |      1 |      3 |      9 |     1 |        0 |          0 |
+----+--------+--------+--------+-------+----------+------------+
|  1 |      2 |      4 |      8 |     0 |        0 |          0 |
+----+--------+--------+--------+-------+----------+------------+
|  2 |      3 |      5 |    nan |     1 |        0 |          0 |
+----+--------+--------+--------+-------+----------+------------+
|  3 |      4 |      6 |      6 |     0 |        0 |          1 |
+----+--------+--------+--------+-------+----------+------------+
|  4 |      5 |      7 |      5 |     0 |        1 |          0 |
+----+--------+--------+--------+-------+----------+------------+

Merging -A simplified and smarter way to merge your dataset

mergex(df1 ,df2, column1, column2, df1_name=None, df2_name=None)

This is contributed by Morris Lee.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

morris-learning-0.0.4.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

morris_learning-0.0.4-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file morris-learning-0.0.4.tar.gz.

File metadata

  • Download URL: morris-learning-0.0.4.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.5

File hashes

Hashes for morris-learning-0.0.4.tar.gz
Algorithm Hash digest
SHA256 1b791f8d099860ecf15e7711bef47cb40f0024ea93ca29b8b87e8d9fa11420b0
MD5 4b407535290fff1bb3bdae609370e408
BLAKE2b-256 62939d0523b410341e6a8faee28ffab02373e4a9dff818b84fb8f87eb05cf87a

See more details on using hashes here.

File details

Details for the file morris_learning-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for morris_learning-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 c4799520337a408692fdf1dceb1b61a856ef5031699ad21babf3963b76a1243b
MD5 6a66af53a225c9ea1e2bf8fd844b0c9e
BLAKE2b-256 331037578f869b9f9445c427e056a6b89016ebef4d387dcf6b7c19705b1dc9b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page