No project description provided
Project description
Mortar Data (Serverless)
Install with pip install mortardata
Set the following environment variables:
export MORTARDATA_S3_REGION=""
export MORTARDATA_S3_BUCKET=""
export MORTARDATA_QUERY_ENDPOINT=""
Then use as follows:
from mortardata import Client
c = Client()
all_points = """
PREFIX brick: <https://brickschema.org/schema/Brick#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?point ?type ?id WHERE {
?point rdf:type/rdfs:subClassOf* brick:Point ;
brick:timeseries/brick:hasTimeseriesId ?id ;
rdf:type ?type .
}"""
df = c.sparql(all_points)
df.to_csv("all_points.csv")
print(df.head())
query1 = """
PREFIX brick: <https://brickschema.org/schema/Brick#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?sen_point ?sen WHERE {
?sen_point rdf:type brick:Supply_Air_Temperature_Sensor ;
brick:timeseries [ brick:hasTimeseriesId ?sen ] .
}"""
df = c.sparql(query1)
df.to_csv("query1_sparql.csv")
print(df.head())
df = c.data_sparql(query1, start="2016-01-01", end="2016-02-01", limit=1e6, sites=['bldg2','bldg5'])
print(df.head())
res = c.data_sparql_to_csv(query1, "query1.csv", sites=['bldg2','bldg5'])
print(res)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mortardata-0.1.0.tar.gz
(3.0 kB
view hashes)
Built Distribution
Close
Hashes for mortardata-0.1.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 135d59cc88df1421cdc377bb7cfe97d624b1cfad82332a964e7399554e2217a9 |
|
MD5 | 8b7682d6bd56bf94961dd13921aeddc6 |
|
BLAKE2b-256 | 1a25fbffc52d2668cd2369109a50070ebda3da87066a3841504bba450dade254 |