Skip to main content

No project description provided

Project description

Mortar Data (Serverless)

Install with pip install mortardata

Set the following environment variables:

export MORTARDATA_S3_REGION=""
export MORTARDATA_S3_BUCKET=""
export MORTARDATA_QUERY_ENDPOINT=""

Then use as follows:

from mortardata import Client

c = Client()

all_points = """
    PREFIX brick: <https://brickschema.org/schema/Brick#>
    PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    SELECT ?point ?type ?id WHERE {
    ?point rdf:type/rdfs:subClassOf* brick:Point ;
        brick:timeseries/brick:hasTimeseriesId ?id ;
        rdf:type ?type .
}"""
df = c.sparql(all_points)
df.to_csv("all_points.csv")
print(df.head())

query1 = """
    PREFIX brick: <https://brickschema.org/schema/Brick#>
    PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
    PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
    SELECT ?sen_point ?sen WHERE {
    ?sen_point rdf:type brick:Supply_Air_Temperature_Sensor ;
               brick:timeseries [ brick:hasTimeseriesId ?sen ] .
}"""
df = c.sparql(query1)
df.to_csv("query1_sparql.csv")
print(df.head())

df = c.data_sparql(query1, start="2016-01-01", end="2016-02-01", limit=1e6, sites=['bldg2','bldg5'])
print(df.head())

res = c.data_sparql_to_csv(query1, "query1.csv", sites=['bldg2','bldg5'])
print(res)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mortardata-0.1.0.tar.gz (3.0 kB view hashes)

Uploaded Source

Built Distribution

mortardata-0.1.0-py3-none-any.whl (3.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page