Model Serving made Efficient in the Cloud.
Project description
Model Serving made Efficient in the Cloud.
Introduction
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
- Highly performant: web layer and task coordination built with Rust 🦀, which offers blazing speed in addition to efficient CPU utilization powered by async I/O
- Ease of use: user interface purely in Python 🐍, by which users can serve their models in an ML framework-agnostic manner using the same code as they do for offline testing
- Dynamic batching: aggregate requests from different users for batched inference and distribute results back
- Pipelined stages: spawn multiple processes for pipelined stages to handle CPU/GPU/IO mixed workloads
Installation
Mosec requires Python 3.6 or above. Install the latest PyPI package with:
pip install -U mosec
Usage
Write the server
Import the libraries and set up a basic logger to better observe what happens.
import logging
from mosec import Server, Worker
from mosec.errors import ValidationError
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(process)d - %(levelname)s - %(filename)s:%(lineno)s - %(message)s"
)
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
Then, we build an API to calculate the exponential with base e for a given number. To achieve that, we simply inherit the Worker
class and override the forward
method. Note that the input req
is by default a JSON-decoded object, e.g., a dictionary here (because we design it to receive data like {"x": 1}
). We also enclose the input parsing part with a try...except...
block to reject invalid input (e.g., no key named "x"
or field "x"
cannot be converted to float
).
import math
class CalculateExp(Worker):
def forward(self, req: dict) -> dict:
try:
x = float(req["x"])
except KeyError:
raise ValidationError("cannot find key 'x'")
except ValueError:
raise ValidationError("cannot convert 'x' value to float")
y = math.exp(x) # f(x) = e ^ x
logger.debug(f"e ^ {x} = {y}")
return {"y": y}
Finally, we append the worker to the server to construct a single-stage workflow
, with specifying how many processes we want it to run in parallel. Then we run the server.
if __name__ == "__main__":
server = Server()
server.append_worker(
CalculateExp, num=2
) # we spawn two processes for parallel computing
server.run()
Run the server
After merging the snippets above into a file named server.py
, we can first have a look at the supported arguments:
python server.py --help
Then let's start the server...
python server.py
and test it:
curl -X POST http://127.0.0.1:8000/inference -d '{"x": 2}'
That's it! You have just hosted your exponential-computing model as a server! 😉
Example
More ready-to-use examples can be found in the Example section. It includes:
- Multi-stage workflow
- Batch processing worker
- PyTorch deep learning models
- sentiment analysis
- image recognition
Contributing
We welcome any kind of contribution. Please give us feedback by raising issues or directly contribute your code and pull request!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file mosec-0.2.0.tar.gz
.
File metadata
- Download URL: mosec-0.2.0.tar.gz
- Upload date:
- Size: 18.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86eec852d9beba66a77623a60aa8a9374c0ef6b336a4a1e66ecf059dd2290e10 |
|
MD5 | 1bb76cd63119e58582045e70a343004e |
|
BLAKE2b-256 | 776b37f1245c4916bbb41d934d04819a4fe1236d12598650a4604aab37c1bfdc |
File details
Details for the file mosec-0.2.0-cp39-cp39-manylinux1_x86_64.whl
.
File metadata
- Download URL: mosec-0.2.0-cp39-cp39-manylinux1_x86_64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 48380dfa4a057ad48f803c40342ba82ba7ebea6e7defca9b4dea1fe995e88150 |
|
MD5 | c1f2d754e4cca24cd4955da4b515498a |
|
BLAKE2b-256 | b63d72bf24e35a511d0b26ade65cb53c39b3611f1c91eba8945226b5eb6f68eb |
File details
Details for the file mosec-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: mosec-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | feb574f5a759f4b5b0a32bb2d6eb8564f779ac04d01c42de1324bf122254669a |
|
MD5 | e03f73f758f595b0d4ba1201827409ac |
|
BLAKE2b-256 | e97c62880f3907b780e22f0ed164582faa2cbc639eadda108073f1962b2fbe8c |
File details
Details for the file mosec-0.2.0-cp38-cp38-manylinux1_x86_64.whl
.
File metadata
- Download URL: mosec-0.2.0-cp38-cp38-manylinux1_x86_64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3dbb2ddb934636dac5d00ab4b38a82102cea544798751b236bc7a349ae20c854 |
|
MD5 | 01cfa61a19cf00b35912750fe0c60c77 |
|
BLAKE2b-256 | f68c0b8f6608300e5b55505b358da5609bbb3ef67dea56967b30a0ef0e0d6a36 |
File details
Details for the file mosec-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: mosec-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8dd02790ebce44c82ec9c775adbbedcfa461cc130eda3bbbb2caae854b975555 |
|
MD5 | bbb2a7708151971e9f90359ab24b1982 |
|
BLAKE2b-256 | 2c6e77840ddba1c08f8638d455cc30e48f05be6d3a37bf4b36e60d322f06cfe5 |
File details
Details for the file mosec-0.2.0-cp37-cp37m-manylinux1_x86_64.whl
.
File metadata
- Download URL: mosec-0.2.0-cp37-cp37m-manylinux1_x86_64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aeacff5072b7a61da682095e7ef85f1ceb7caa8117475a4b038a25026a4c4352 |
|
MD5 | 03842be2c15f722ac49cbf10fc878f09 |
|
BLAKE2b-256 | 6de23e08ce493ce57e2f09b8594f3a50f102d8f90e36e8bf4efa15ab83ae20ba |
File details
Details for the file mosec-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: mosec-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8fb310cdcfc501bdc83fe6e4a02a273a964af0ee008487703ba7a4da7c34ca49 |
|
MD5 | dc1153b1a49ab10555faae1e2c2a6df5 |
|
BLAKE2b-256 | b39f15d6d48073a87aad62ac7e2a01463c556fc654533063a7ccfca8f657ebcd |
File details
Details for the file mosec-0.2.0-cp36-cp36m-manylinux1_x86_64.whl
.
File metadata
- Download URL: mosec-0.2.0-cp36-cp36m-manylinux1_x86_64.whl
- Upload date:
- Size: 2.7 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a761edf2b5a096c09cc696a6387080446e18ae07a6357aeaf705455e8975dbc3 |
|
MD5 | c57b4f55a8ef35f6710f03a8ecfbfb6c |
|
BLAKE2b-256 | effc0b5a01c3393bfc06c5402aadb98aa12c1013b69e851189ba09ebf7325ac3 |
File details
Details for the file mosec-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: mosec-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.6m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de28bde05fd4505d0d2e0da9206810a0f44b11d9f1076d62dbdbe1fb1a918840 |
|
MD5 | b0a9a77fa7d60dc969e61dfe3c77ade3 |
|
BLAKE2b-256 | ccaed95433e80bddd76d6fb8936b992d622a78df138637986a583ee5478e1c11 |