Maximum likelihood analysis for fitting semi-analytical model predictions to observed astronomical transient data.
Project description
<p align="center"><img src="logo.png" align="left" alt="MOSFiT" width="300"/></p>
<a href="https://travis-ci.org/guillochon/MOSFiT"><img src="https://img.shields.io/travis/guillochon/MOSFiT.svg" alt="Build Status"></a>
<a href="https://coveralls.io/github/guillochon/MOSFiT?branch=master"><img src="https://coveralls.io/repos/github/guillochon/MOSFiT/badge.svg?branch=master" alt="Coverage Status"></a>
<a href="https://www.python.org"><img src="https://img.shields.io/badge/python-2.7%2C%203.4%2C%203.5%2C%203.6-blue.svg" alt="Python Version"></a>
<a href="https://badge.fury.io/py/mosfit"><img src="https://badge.fury.io/py/mosfit.svg" alt="PyPI version"></a>
<a href="http://mosfit.readthedocs.io/en/latest/?badge=latest"><img src="https://readthedocs.org/projects/mosfit/badge/?version=latest" alt="Documentation Status"></a>
`MOSFiT` (**M**odular **O**pen-**S**ource **Fi**tter for **T**ransients) is a Python 2.7/3.x package that performs maximum likelihood analysis to fit semi-analytical model predictions to observed transient data. Data can be provided by the user, or can be pulled automatically from the [Open Supernova Catalog](https://sne.space) by its name, and thus the code can be used to fit *any* supernova within that database, or any database that shares the format described in the [OSC schema](https://github.com/astrocatalogs/supernovae/blob/master/SCHEMA.md) (such as the [Open TDE Catalog](https://tde.space) or the [Open Nova Catalog](https://opennova.space)). With the use of an optional upload flag, fits performed by users can then be uploaded back to the aforementioned catalogs.<br clear="all">
## Installation
`MOSFiT` is available on pip, and can be installed in the standard way:
```bash
pip install mosfit
```
To assist in the development of `MOSFiT`, the repository should be cloned from GitHub and then installed into your Python environment via the `setup.py` file:
```bash
git clone https://github.com/guillochon/MOSFiT.git
cd MOSFiT
python setup.py install
```
## Using MOSFiT
For detailed instructions on using MOSFiT, please see our documentation on RTD: http://mosfit.readthedocs.io/
<a href="https://travis-ci.org/guillochon/MOSFiT"><img src="https://img.shields.io/travis/guillochon/MOSFiT.svg" alt="Build Status"></a>
<a href="https://coveralls.io/github/guillochon/MOSFiT?branch=master"><img src="https://coveralls.io/repos/github/guillochon/MOSFiT/badge.svg?branch=master" alt="Coverage Status"></a>
<a href="https://www.python.org"><img src="https://img.shields.io/badge/python-2.7%2C%203.4%2C%203.5%2C%203.6-blue.svg" alt="Python Version"></a>
<a href="https://badge.fury.io/py/mosfit"><img src="https://badge.fury.io/py/mosfit.svg" alt="PyPI version"></a>
<a href="http://mosfit.readthedocs.io/en/latest/?badge=latest"><img src="https://readthedocs.org/projects/mosfit/badge/?version=latest" alt="Documentation Status"></a>
`MOSFiT` (**M**odular **O**pen-**S**ource **Fi**tter for **T**ransients) is a Python 2.7/3.x package that performs maximum likelihood analysis to fit semi-analytical model predictions to observed transient data. Data can be provided by the user, or can be pulled automatically from the [Open Supernova Catalog](https://sne.space) by its name, and thus the code can be used to fit *any* supernova within that database, or any database that shares the format described in the [OSC schema](https://github.com/astrocatalogs/supernovae/blob/master/SCHEMA.md) (such as the [Open TDE Catalog](https://tde.space) or the [Open Nova Catalog](https://opennova.space)). With the use of an optional upload flag, fits performed by users can then be uploaded back to the aforementioned catalogs.<br clear="all">
## Installation
`MOSFiT` is available on pip, and can be installed in the standard way:
```bash
pip install mosfit
```
To assist in the development of `MOSFiT`, the repository should be cloned from GitHub and then installed into your Python environment via the `setup.py` file:
```bash
git clone https://github.com/guillochon/MOSFiT.git
cd MOSFiT
python setup.py install
```
## Using MOSFiT
For detailed instructions on using MOSFiT, please see our documentation on RTD: http://mosfit.readthedocs.io/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mosfit-0.3.1.tar.gz
(1.9 MB
view details)
File details
Details for the file mosfit-0.3.1.tar.gz
.
File metadata
- Download URL: mosfit-0.3.1.tar.gz
- Upload date:
- Size: 1.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 844e55fb7f32afb33edc8d4a26446782e96647d4a17de85929d026f5d7e4b1d5 |
|
MD5 | c9d884888666e87f31531187aabbd670 |
|
BLAKE2b-256 | 49d4d99c8fb49cb5692acc64f9422d6508f67f97a8b78e2aeba1f71bdef7430a |