Mongo ODM, based on motor+pydantic
Project description
motordantic
Install
Install using pip
...
pip install motordantic
##settings
in your main file application
from motordantic.connection import connect
address = '<your connection url>'
database_name = '<name of database>'
# basic
connect(address=address, database_name=database_name, max_pool_size=100)
# if u use ssl
connect(address=address, database_name=database_name, max_pool_size=100, ssl_cert_path='<path to cert>')
# extra params
server_selection_timeout_ms = 50000 # pymongo serverSelectionTimeoutMS
connect_timeout_ms = 50000 # pymongo connectTimeoutMS
socket_timeout_ms = 50000 # pymongo socketTimeoutMS
Declare models
from motordantic.models import MongoModel
class Banner(MongoModel):
banner_id: str
name: str
utms: dict
# if you need take an existing collection, you must reimplement set_collection_name method like that
class Banner(MongoModel):
...
@classmethod
def set_collection_name(cls) -> str:
return 'banner_model'
Queries
banner = await Banner.Q.find_one() # return a banner model obj
# skip and limit
banner_with_skip_and_limit = await Banner.Q.find(skip_rows=10, limit_rows=10)
banner_data = await Banner.Q.find_one().data # return a dict
banners_queryset= await Banner.Q.find() # return FindResult object
banners_dict = await Banner.Q.find().data
list_of_banner_objects = await Banner.Q.find().list
banners_generator = await Banner.Q.find().generator # generator of Banner objects
banners_generator_of_dicts = await Banner.Q.find().data_generator # generator of Banner objects
count, banners = await Banner.Q.find_with_count() # return tuple(int, QuerySet)
result = await Banner.Q.find()
serializeble_fields = result.serialize(['utms', 'banner_id', 'name']) # return list with dict like {'utm':..., 'banner_id': ..,'name': ...}
result = await Banner.Q.find()
generator_serializeble_fields = result.serialize_generator(['utms', 'banner_id', 'name']) # return generator
result = await Banner.Q.find()
json_serializeble_fields = result.serialize_json(['utms', 'banner_id', 'name']) # return json str serializable
# count
count = await Banner.Q.count(name='test') or await Banner.Q.count_documents(name='test')
# insert queries
banner_id = await Banner.Q.insert_one(banner_id=1, name='test', utms={'utm_source': 'google', 'utm_medium': 'cpc'})
banners = [Banner(banner_id=2, name='test2', utms={}), Banner(banner_id=3, name='test3', utms={})]
await = Banner.Q.insert_many(banners) # list off models obj, or dicts
await Banner.Q.bulk_create(banners, batch_size=2) # insert_many with batch
# update queries
await Banner.Q.update_one(banner_id=1, name__set='updated') # parameters that end __set - been updated
await Banner.Q.update_many(name__set='update all names')
# delete queries
await Banner.Q.delete_one(banner_id=1) # delete one row
await Banner.Q.delete_many(banner_id=1) # delete many rows
# extra queries
await Banner.Q.find(banner_id__in=[1, 2]) # get data in list
await Banner.Q.find(banner_id__range=[1,10]) # get date from 1 to 10
await Banner.Q.find(name__regex='^test') # regex query
await Banner.Q.find(name__startswith='t') # startswith query
await Banner.Q.find(name__endswith='t') # endswith query
await Banner.Q.find(name__not_startswith='t') # not startswith query
await Banner.Q.find(name__not_endswith='t') # not endswith query
await Banner.Q.find(name__nin=[1, 2]) # not in list
await Banner.Q.find(name__ne='test') # != test
await Banner.Q.find(banner_id__gte=1, banner_id__lte=10) # id >=1 and id <=10
await Banner.Q.find(banner_id__gt=1, banner_id__lt=10) # id >1 and id <10
await Banner.Q.find_one(banner_id=1, utms__utm_medium='cpm') # find banner where banner_id=1, and utm['utm_medium'] == 'cpm'
await Banner.Q.update_one(banner_id=1, utms__utm_source__set='google') # update utms['utm_source'] in Banner
# find and update
await Banner.Q.find_and_update(banner_id=1, name__set='updated', projection_fields=['name': True]) # return {'name': 'updated}
await Banner.Q.find_and_update(banner_id=1, name__set='updated') # return Banner obj
# find and replace
await Banner.Q.find_and_update(banner_id=1, Banner(banner_id=1, name='uptated'), projection={'name': True})
# return {'name': 'updated}
await Banner.Q.find_and_update(banner_id=1, Banner(banner_id=1, name='uptated')) # return Banner obj
# bulk operations
from random import randint
banners = await Banner.Q.find()
to_update = []
for banner in banners:
banner.banner_id = randint(1,100)
to_update.append(banner)
await Banner.Q.bulk_update(banners, updated_fields=['banner_id'])
# bulk update or create
banners = [Banner(banner_id=23, name='new', utms={}), Banner(banner_id=1, name='test', utms={})]
await Banner.Q.bulk_update_or_create(banners, query_fields=['banner_id'])
# aggregate with sum, min, max
class Stats(MongoModel):
id: int
cost: float
clicks: int
shows: int
date: str
from motordantic.aggregate import Sum, Min, Max
summ_cost = await Stats.Q.simple_aggregate(date='2020-01-20', aggregation=Sum('cost'))
min_clicks = await Stats.Q.simple_aggregate(date='2020-01-20', aggregation=Min('clicks'))
min_shows = await Stats.Q.simple_aggregate(date='2020-01-20', aggregation=Max('shows'))
# logical
from motordantic.query import Q
data = Banner.Q.find_one(Q(name='test') | Q(name__regex='testerino'))
sync queries
sync_result = Banner.Q.sync.find_one()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
motordantic-0.2.1a1.tar.gz
(35.3 kB
view details)
File details
Details for the file motordantic-0.2.1a1.tar.gz
.
File metadata
- Download URL: motordantic-0.2.1a1.tar.gz
- Upload date:
- Size: 35.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 291504acd2aca66a7bda16c467ae6fa63b1b7074cb8b2d987566fed0ded080ac |
|
MD5 | d1ed216543e40834d9624c54c5a2c96d |
|
BLAKE2b-256 | 2422b7b608b5cb4bdcce22f4c5f0195e5b48e581bef9ab2379b98bdc3295b529 |