Skip to main content

Mongo ODM, based on motor+pydantic

Project description

motordantic

Install

Install using pip...

pip install motordantic

##settings

in your main file application

from motordantic.connection import connect

address = '<your connection url>'
database_name = '<name of database>'

# basic
connect(address=address, database_name=database_name, max_pool_size=100)

# if u use ssl
connect(address=address, database_name=database_name, max_pool_size=100, ssl_cert_path='<path to cert>')

# extra params
server_selection_timeout_ms = 50000 # pymongo serverSelectionTimeoutMS
connect_timeout_ms = 50000 # pymongo connectTimeoutMS
socket_timeout_ms = 50000 # pymongo socketTimeoutMS

Declare models

from motordantic.models import MongoModel

class Banner(MongoModel):
    banner_id: str
    name: str
    utms: dict

# if you need take an existing collection, you must reimplement set_collection_name method like that
class Banner(MongoModel):
    ...

    @classmethod
    def set_collection_name(cls) -> str:
        return 'banner_model'

Queries

banner = await Banner.Q.find_one() # return a banner model obj
# skip and limit
banner_with_skip_and_limit = await Banner.Q.find(skip_rows=10, limit_rows=10)
banner_data = await Banner.Q.find_one().data # return a dict
banners_queryset= await Banner.Q.find() # return FindResult object
banners_dict = await Banner.Q.find().data
list_of_banner_objects = await Banner.Q.find().list
banners_generator = await  Banner.Q.find().generator # generator of Banner objects
banners_generator_of_dicts = await Banner.Q.find().data_generator # generator of Banner objects
count, banners = await Banner.Q.find_with_count() # return tuple(int, QuerySet)

result = await Banner.Q.find()
serializeble_fields = result.serialize(['utms', 'banner_id', 'name']) # return list with dict like {'utm':..., 'banner_id': ..,'name': ...}
result = await Banner.Q.find()
generator_serializeble_fields = result.serialize_generator(['utms', 'banner_id', 'name']) # return generator
result = await Banner.Q.find()
json_serializeble_fields = result.serialize_json(['utms', 'banner_id', 'name']) # return json str serializable

# count
count = await Banner.Q.count(name='test') or await Banner.Q.count_documents(name='test')

# insert queries
banner_id = await Banner.Q.insert_one(banner_id=1, name='test', utms={'utm_source': 'google', 'utm_medium': 'cpc'})
banners = [Banner(banner_id=2, name='test2', utms={}), Banner(banner_id=3, name='test3', utms={})]
await = Banner.Q.insert_many(banners) # list off models obj, or dicts
await Banner.Q.bulk_create(banners, batch_size=2) # insert_many with batch
# update queries
await Banner.Q.update_one(banner_id=1, name__set='updated') # parameters that end __set - been updated
await Banner.Q.update_many(name__set='update all names')

# delete queries
await Banner.Q.delete_one(banner_id=1) # delete one row
await Banner.Q.delete_many(banner_id=1) # delete many rows

# extra queries
await Banner.Q.find(banner_id__in=[1, 2]) # get data in list

await Banner.Q.find(banner_id__range=[1,10]) # get date from 1 to 10

await Banner.Q.find(name__regex='^test') # regex query

await Banner.Q.find(name__startswith='t') # startswith query

await Banner.Q.find(name__endswith='t') # endswith query
await Banner.Q.find(name__not_startswith='t') # not startswith query

await Banner.Q.find(name__not_endswith='t') # not endswith query


await Banner.Q.find(name__nin=[1, 2]) # not in list

await Banner.Q.find(name__ne='test') # != test

await Banner.Q.find(banner_id__gte=1, banner_id__lte=10) # id >=1 and id <=10
await Banner.Q.find(banner_id__gt=1, banner_id__lt=10) # id >1 and id <10
await Banner.Q.find_one(banner_id=1, utms__utm_medium='cpm') # find banner where banner_id=1, and utm['utm_medium'] == 'cpm'

await Banner.Q.update_one(banner_id=1, utms__utm_source__set='google') # update utms['utm_source'] in Banner

# find and update
await Banner.Q.find_and_update(banner_id=1, name__set='updated', projection_fields=['name': True]) # return {'name': 'updated}
await Banner.Q.find_and_update(banner_id=1, name__set='updated') # return Banner obj


# find and replace
await Banner.Q.find_and_update(banner_id=1, Banner(banner_id=1, name='uptated'), projection={'name': True})
# return {'name': 'updated}
await Banner.Q.find_and_update(banner_id=1, Banner(banner_id=1, name='uptated')) # return Banner obj

# bulk operations
from random import randint

banners = await Banner.Q.find()
to_update = []

for banner in banners:
    banner.banner_id = randint(1,100)
    to_update.append(banner)

await Banner.Q.bulk_update(banners, updated_fields=['banner_id'])

# bulk update or create

banners = [Banner(banner_id=23, name='new', utms={}), Banner(banner_id=1, name='test', utms={})]
await Banner.Q.bulk_update_or_create(banners, query_fields=['banner_id'])


# aggregate with sum, min, max
class Stats(MongoModel):
    id: int
    cost: float
    clicks: int
    shows: int
    date: str

from motordantic.aggregate import Sum, Min, Max

summ_cost = await Stats.Q.simple_aggregate(date='2020-01-20', aggregation=Sum('cost'))
min_clicks = await Stats.Q.simple_aggregate(date='2020-01-20', aggregation=Min('clicks'))
min_shows = await Stats.Q.simple_aggregate(date='2020-01-20', aggregation=Max('shows'))

# logical
from motordantic.query import Q
data = Banner.Q.find_one(Q(name='test') | Q(name__regex='testerino'))

sync queries

sync_result = Banner.Q.sync.find_one()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

motordantic-0.2.1a1.tar.gz (35.3 kB view details)

Uploaded Source

File details

Details for the file motordantic-0.2.1a1.tar.gz.

File metadata

  • Download URL: motordantic-0.2.1a1.tar.gz
  • Upload date:
  • Size: 35.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.12

File hashes

Hashes for motordantic-0.2.1a1.tar.gz
Algorithm Hash digest
SHA256 291504acd2aca66a7bda16c467ae6fa63b1b7074cb8b2d987566fed0ded080ac
MD5 d1ed216543e40834d9624c54c5a2c96d
BLAKE2b-256 2422b7b608b5cb4bdcce22f4c5f0195e5b48e581bef9ab2379b98bdc3295b529

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page