Skip to main content

An asynchronous Object Document Mapper (O.D.M) for MongoDB built on-top of Motor.

Project description

PyPI - Version PyPI - Downloads PyPI License GitHub Contributors

Author: Patrick Prunty.

motormongo - An Object Document Mapper for MongoDB built on-top of Motor, the MongoDB recommended asynchronous Python driver for MongoDB Python applications, designed to work with Tornado or asyncio and enable non-blocking access to MongoDB.

Asynchronous operations in a backend system, built using FastAPI for example, enhances performance and scalability by enabling non-blocking, concurrent handling of multiple requests, leading to more efficient use of server resources.

The interface for instantiating Document classes follows similar logic to mongoengine, enabling ease-of-transition and migration from mongoengine to motormongo.

Note: I am currently working on patching any bugs in the latest releases, please contact me or create a GitHub issue for any bugs you may find (try upgrading if you encounter any issues as the bug may already have been fixed in subsequent version). Thank you 😎

  1. Installation
  2. Quickstart
  3. motormongo Fields
  4. CRUD classmethods
  5. CRUD instance methods
  6. FastAPI integration
  7. License

Installation

To install motormongo, you can use pip inside your virtual environment:

python -m pip install motormongo

Alternatively, to install motormongo into your poetry environment:

poetry add motormongo

Quickstart

Step 1. Create a motormongo client:

import asyncio
from motormongo import DataBase


async def init_db():
    # This 'connect' method needs to be called inside of an async function
    await DataBase.connect(uri="<mongo_uri>", database="<mongo_database>")


if __name__ == "__main__":
    asyncio.run(init_db())

or, in a FastAPI application:

from fastapi import FastAPI
from motormongo import DataBase

app = FastAPI()


@app.on_event("startup")
async def startup_db_client():
    await DataBase.connect(uri="<mongo_uri>", db="<mongo_database>")


@app.on_event("shutdown")
async def shutdown_db_client():
    await DataBase.close()

The mongo_uri should look something like this:

mongodb+srv://<username>:<password>@<cluster>.mongodb.net

and database should be the name of an existing MongoDB database in your MongoDB instance.

For details on how to set up a local or cloud MongoDB database instance, see here.

Step 2. Define a motormongo Document:

Define a motormongo User document:

import re
import bcrypt
from motormongo import Document, BinaryField, StringField


def hash_password(password) -> bytes:
    # Example hashing function
    return bcrypt.hashpw(password.encode('utf-8'), salt=bcrypt.gensalt())


class User(Document):
    username = StringField(help_text="The username for the user", min_length=3, max_length=50)
    email = StringField(help_text="The email for the user", regex=re.compile(r'^\S+@\S+\.\S+$'))  # Simple email regex
    password = BinaryField(help_text="The hashed password for the user", hash_function=hash_password)

    def verify_password(self, password: str) -> bool:
        """ Utility function which can be used to validate user's salted password later...
        
        ex.     user = await User.find_one({"_id": request.user_id})
                is_authenticated = user.verify_password(request.password)
        """
        return bcrypt.checkpw(password.encode("utf-8"), self.password)

    class Meta:
        collection = "users"  # < If not provided, will default to class name (ex. User->user, UserDetails->user_details)
        created_at_timestamp = True  # < Provide a DateTimeField for document creation
        updated_at_timestamp = True  # < Provide a DateTimeField for document updates

Step 3: Create a MongoDB document using the User class

import bcrypt

await User.insert_one(
    {
        "username": "johndoe",
        "email": "johndoe@portmarnock.ie",
        "password": "password123"
        # < hash_functon will hash the string literal password and store binary field in the database
    }
)

Step 4: Validate user was created in your MongoDB collection

You can do this by using MongoDB compass GUI, or alternatively, add a query to find all documents in the user collection after doing the insert in step 3:

users = User.find_many({})
if users:
    print("User collection contains the following documents:")
    for user in users:
        print(user.to_dict())
else:
    print("User collection failed to update! Check your MongoDB connection details and try again!")

Step 5: Put all the code above into one file and run it

python main.py

or in a FastAPI application:

uvicorn main:app --reload

Please refer to FastAPI Documentation for more details on how to get setup with FastAPI.

Congratulations 🎉

You've successfully created your first motormongo Object Document Mapper class. 🥳

The subsequent sections detail the datatype fields provided by motormongo, as well as the CRUD operations available on the classmethods and object instance methods of a motormongo document.

If you wish to get straight into how to integrate motormongo with your FastAPI application, skip ahead to the FastAPI Integration section.

motormongo Fields

motormongo supports a variety of field types to accurately define the schema of your MongoDB documents. Each field type is designed to handle specific data types and validations:

  • BinaryField: Stores binary data, useful for storing encoded or hashed data like passwords.
  • BooleanField: Stores boolean values (True or False).
  • DateTimeField: Manages date and time, with options for automatically setting current date/time on creation or update.
  • EmbeddedDocumentField: For fields that should contain values from a predefined enumeration.
  • EnumField: For fields that should contain values from a predefined enumeration.
  • FloatField: Handles floating-point numbers, with options to specify minimum and maximum values.
  • GeoJSONField: Manages geographical data in GeoJSON format, with an option to return data as JSON.
  • IntegerField: Manages integer data, allowing specifications for minimum and maximum values.
  • ListField: Handles lists of items, which can be of any type.
  • ReferenceField: Creates a reference to another document.
  • StringField: Handles string data with options for minimum and maximum length, and regex validation.

BinaryField

The BinaryField is used for storing binary data in the database, with support for encoding, hashing, and decoding.

Parameters:

  • hash_function: (Optional) A callable for hashing input strings to bytes.
  • return_decoded: (Optional) If True, decodes binary data when retrieved.
  • encode: (Optional) Function to encode a string to bytes. Defaults to UTF-8 encoding.
  • decode: (Optional) Function to decode bytes back to a string. Defaults to UTF-8 decoding.

Example Usage:

from motormongo import Document, BinaryField, StringField
import bcrypt


def hash_password(password: str) -> bytes:
    return bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt())


class User(Document):
    username = StringField(min_length=3, max_length=50)
    password = BinaryField(hash_function=hash_password, return_decoded=False)
    
    def verify_password(self, password: str) -> bool:
        return bcrypt.checkpw(password.encode("utf-8"), self.password)


# Create a user with a hashed password
user = User(username="johndoe", password="secret")
inserted_user = await user.save()
is_authenticated = inserted_user.verify_password("wrongpassword") # Will return False
is_authenticated = inserted_user.verify_password("secret") # Will return True

BooleanField

The BooleanField is used for storing boolean values (True or False). It ensures that the data stored in this field is strictly boolean.

Parameters:

  • There are no specific parameters unique to BooleanField other than those inherited from the base Field class.
from motormongo import Document, BooleanField, StringField


class Product(Document):
    name = StringField(min_length=1, max_length=100)
    is_available = BooleanField(default=False)


# Create a product indicating its availability
product = Product(name="Gadget", is_available=True)
await product.save()

DateTimeField

The DateTimeField handles date and time values, with options to automatically update these values on document creation or modification.

Parameters:

  • auto_now: Automatically update the field to the current datetime when the document is saved.
  • auto_now_add: Automatically set the field to the current datetime when the document is created.
  • datetime_formats: List of string formats to parse datetime strings.

Example Usage:

from motormongo import Document, DateTimeField


class Event(Document):
    start_time = DateTimeField(auto_now_add=True)


# Create an event with the current start time
event = Event()
await event.save()

EmbeddedDocumentField

The EmbeddedDocumentField is used for embedding documents within a document, supporting nested document structures. This field allows you to include complex data structures as part of your document.

Parameters:

  • document_type: The class of the embedded document, which must be a subclass of EmbeddedDocument, BaseModel from Pydantic, or dict representation of the EmbeddedDocument.

Example Usage:

from motormongo import Document, EmbeddedDocument, EmbeddedDocumentField, StringField
from pydantic import BaseModel

class Address(EmbeddedDocument):
    street = StringField()
    city = StringField()


class User(Document):
    name = StringField()
    address = EmbeddedDocumentField(document_type=Address)

class PydanticAddress(BaseModel):
    street: str 
    city: str

# Create a user with an embedded address document
user = User(name="John Doe", address={"street": "123 Elm St", "city": "Springfield"})
# user = User(name="John Doe", address=Address(street="123 Elm St", city="Springfield")) # Also works
# user = User(name="John Doe", address=PydanticAddress(street="123 Elm St", city="Springfield")) # Also works
await user.save()

EnumField

The EnumField is designed to store enumerated values, allowing for validation against a predefined set of options.

Parameters:

  • enum: The enumeration class that defines valid values for the field.

Example Usage:

import enum
from motormongo import Document, EnumField


class UserStatus(enum.Enum):
    ACTIVE = 'active'
    INACTIVE = 'inactive'
    BANNED = 'banned'


class User(Document):
    status = EnumField(enum=UserStatus)


# Create a user and set their status using the EnumField
user = User(status=UserStatus.ACTIVE)
# user = User(status="active") # Also works
await user.save()

FloatField

The FloatField handles floating-point numbers, with options to specify minimum and maximum values.

Parameters:

  • min_value: (Optional) The minimum allowable value.
  • max_value: (Optional) The maximum allowable value.

Example Usage:

from motormongo import Document, FloatField


class Measurement(Document):
    temperature = FloatField(min_value=-273.15)  # Absolute zero constraint


# Record a temperature measurement
measurement = Measurement(temperature=25.5)
await measurement.save()

GeoJSONField

The GeoJSONField is designed for storing geographical coordinates in GeoJSON format.

Parameters:

  • return_as_list: (Optional) If True, returns the coordinates as a [longitude, latitude] list instead of a GeoJSON object.

Example Usage:

from motormongo import Document, GeoJSONField


class Location(Document):
    point = GeoJSONField()


# Create a location point
location = Location(point={"type": "Point", "coordinates": [-73.856077, 40.848447]})  # Could also use 
# location = Location(point=[-73.856077, 40.848447]) # This would also work
await location.save()

IntegerField

The IntegerField is used for storing integer values, with optional validation for minimum and maximum values.

Parameters:

  • min_value: (Optional) The minimum allowable value.
  • max_value: (Optional) The maximum allowable value.

Example Usage:

from motormongo import Document, IntegerField


class Product(Document):
    quantity = IntegerField(min_value=0)


# Create a product with quantity validation
product = Product(quantity=10)
await product.save()

ListField

The ListField is used for storing a list of items, optionally validating the type of items in the list.

Parameters:

  • field: (Optional) A Field instance specifying the type of items in the list.

Example Usage:

from motormongo import Document, ListField, StringField


class ShoppingList(Document):
    items = ListField(field=StringField())


# Create a shopping list with string items
shopping_list = ShoppingList(items=["Milk", "Eggs", "Bread"])
await shopping_list.save()

ReferenceField

The ReferenceField is used to create a reference to another document, typically for creating relationships between collections.

Parameters:

  • document_class: The class of the document to which the field references.

Example Usage:

from motormongo import Document, ReferenceField
from bson import ObjectId


class User(Document):
    pass


class Post(Document):
    author = ReferenceField(document_class=User)


# Create a user and a post referencing the user
user = User(_id=ObjectId())
post = Post(author=user)

# When accessing `post.author`, it fetches the User instance it references

To fetch the referenced document, you must await the coroutine returned by accessing the reference field. This operation asynchronously retrieves the related document instance from the database.

# Assuming `post` is an instance of the Post document with a reference to a User
# Fetch the user referenced by the post's author field
referenced_user = await post.author()

if referenced_user:
    print("Referenced User:", referenced_user.to_dict())
else:
    print("User not found or failed to fetch.")

This example demonstrates how to access and asynchronously fetch the document referenced by a ReferenceField. The await keyword is crucial because the operation is asynchronous, involving a database query to retrieve the referenced document.

Note: Ensure that the fetching operation is performed within an asynchronous context, such as an async function. The ReferenceField provides a powerful way to manage relationships between documents, enabling complex data models with interconnected documents.

StringField

The StringField is used for storing string data in a document. It supports validation for minimum and maximum length and can enforce a specific regex pattern.

Parameters:

  • min_length: (Optional) The minimum length of the string.
  • max_length: (Optional) The maximum length of the string.
  • regex: (Optional) A regex pattern that the string must match.

Example Usage:

from motormongo import Document, StringField


class UserProfile(Document):
    username = StringField(min_length=3, max_length=50)
    bio = StringField(max_length=200, regex=r'^[A-Za-z0-9 ]*$')  # Alphanumeric and space only


# Create a user profile with validation
profile = UserProfile(username="user123", bio="I love coding.")
await profile.save()

Class methods

Operations

The following class methods are supported by motormongo's Document class:

CRUD Type Operation
Create insert_one(document: dict, **kwargs) -> Document
Create insert_many(documents: List[dict]) -> Tuple[List[Document], Any]
Read find_one(query: dict, **kwargs) -> Document
Read find_many(query: dict, limit: int, **kwargs) -> List[Document]
Update update_one(query: dict, update_fields: dict) -> Document
Update update_many(query: dict, update_fields: dict) -> Tuple[List[Document], int]
Delete delete_one(query: dict, **kwargs) -> bool
Delete delete_many(query: dict, **kwargs) -> int
Mixed find_one_or_create(query: dict, defaults: dict) -> Tuple[Document, bool]
Mixed find_one_and_replace(query: dict, replacement: dict) -> Document
Mixed find_one_and_delete(query: dict) -> Document
Mixed find_one_and_update_empty_fields(query: dict, update_fields: dict) -> Tuple[Document, bool]

All examples below assume User is a subclass of motormongo provided Document class.

Create

insert_one(document: dict, **kwargs) -> Document

Inserts a single document into the database.

user = await User.insert_one({
    "name": "John",
    "age": 24,
    "alive": True
})

Alternatively, using **kwargs:

user = await User.insert_one(
    name="John",
    age=24,
    alive=True)

And similarly, with a dictionary:

user_document = {
    "name": "John",
    "age": 24,
    "alive": True
}
user = await User.insert_one(**user_document)

insert_many(List[document]) -> tuple[List['Document'], Any]

users, user_ids = await User.insert_many(
    [
        {
            "name": "John",
            "age": 24,
            "alive": True
        },
        {
            "name": "Mary",
            "age": 2,
            "alive": False
        }
    ]
)

or

docs_to_insert = [{"name": "Alice", "age": 30}, {"name": "Bob", "age": 25}]
inserted_docs, inserted_ids = await User.insert_many(docs_to_insert)

Read

find_one(query, **kwargs) -> Document

user = await User.find_one(
    {
        "_id": "655fc281c440f677fa1e117e"
    }
)

Alternatively, using **kwargs:

user = await User.find_one(_id="655fc281c440f677fa1e117e")

Note: The _id string datatype here is automatically converted to a BSON ObjectID, however, motormongo handles the scenario when a BSON ObjectId is passed as the _id datatype:

from bson import ObjectId

user = await User.find_one(
    {
        "_id": ObjectId("655fc281c440f677fa1e117e")
    }
)

find_many(query, limit, **kwargs) -> List[Document]

users = await User.find_many(age={"$gt": 40}, alive=False, limit=20)

or

query = {"age": {"$gt": 40}, "alive": False}
users = await User.find_many(**query, limit=20)

Update

update_one(query, updated_fields) -> Document

updated_user = await User.update_one(
    {
        "_id": "655fc281c440f677fa1e117e"
    },
    {
        "name": "new_name",
        "age": 30
    }
)

or

query_criteria = {"name": "old_name"}
update_data = {"name": "updated_name"}
updated_user = await User.update_one(query_criteria, update_data)

update_many(qeury, fields) -> Tuple[List[Any], int]

updated_users, modified_count = await User.update_many({'age': {'$gt': 40}}, {'category': 'senior'})

another example:

updated_users, modified_count = await User.update_many({'name': 'John Doe'}, {'$inc': {'age': 1}})

Delete

delete_one(query, **kwargs) -> bool

deleted = await User.delete_one({'_id': '507f191e810c19729de860ea'})

Alternatively, using **kwargs:

deleted = await User.delete_one(name='John Doe')

delete_many(query, **kwargs) -> int

deleted_count = await User.delete_many({'age': {'$gt': 40}})

Another example:

# Delete all users with a specific status
deleted_count = await User.delete_many({'status': 'inactive'})

Alternatively, using **kwargs:

deleted_count = await User.delete_many(status='inactive')

Mixed

find_one_or_create(query, defaults) -> Tuple['Document', bool]

user, created = await User.find_one_or_create({'username': 'johndoe'}, defaults={'age': 30})

find_one_and_replace(query, replacement) -> Document

replaced_user = await User.find_one_and_replace({'username': 'johndoe'}, {'username': 'johndoe', 'age': 35})

find_one_and_delete(query) -> Document

deleted_user = await User.find_one_and_delete({'username': 'johndoe'})

find_one_and_update_empty_fields(query, update_fields) -> Tuple['Document', bool]

updated_user, updated = await User.find_one_and_update_empty_fields(
    {'username': 'johndoe'},
    {'email': 'johndoe@example.com', 'age': 30}
)

Instance methods

motormongo also supports the manimulation of fields on the object instance. This allows users to programmatically achieve the same operations listed above through the object instance itself.

Operations

The following are object instance methods are supported by motormongo's Document class:

CRUD Type Operation
Create save() -> None
Delete delete() -> None

Note: All update operations can be manipulated on the fields in the Document class object itself.

user.save() -> None

# Find user by MongoDB _id
user = await User.find_one(
    {
        "_id": "655fc281c440f677fa1e117e"
    }
)
# If there age is greater than 80, make them dead
if user.age > 80:
    user.alive = False
# Persist update on User instance in MongoDB mongo
user.save()

In this example, User.find_one() returns an instance of User. If the age field is greater than 80, the alive field is set to false. The instance of the document in the MongoDB database is then updated by calling the .save() method on the User object instance.

Delete

user.delete() -> None

# Find all users where the user is not alive
users = await User.find_many(
    {
        "alive": False
    }
)
# Recursively delete all User instances in the users list who are not alive
for user in users:
    user.delete()

FastAPI integration

motormongo can be easily integrated in FastAPI APIs to leverage the asynchronous ability of FastAPI. To leverage motormongo's ease-of-use, Pydantic model's should be created to represent the MongoDB motormongo Document as a Pydantic model. Below is a light-weight CRUD FastAPI application using motormongo:

import os
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, Field
from motormongo import DataBase, Document, BinaryField, StringField
import re
import bcrypt


def hash_password(password) -> bytes:
    # Example hashing function
    return bcrypt.hashpw(password.encode('utf-8'), salt=bcrypt.gensalt())


class User(Document):
    username = StringField(help_text="The username for the user", min_length=3, max_length=50)
    email = StringField(help_text="The email for the user", regex=re.compile(r'^\S+@\S+\.\S+$'))  # Simple email regex
    password = BinaryField(help_text="The hashed password for the user", hash_function=hash_password)

    def verify_password(self, password: str) -> bool:
        return bcrypt.checkpw(password.encode("utf-8"), self.password)

    class Meta:
        collection = "users"  # < If not provided, will default to class name (ex. User->user, UserDetails->user_details)
        created_at_timestamp = True  # < Provide a DateTimeField for document creation
        updated_at_timestamp = True  # < Provide a DateTimeField for document updates


class UserModelRequest(BaseModel):
    username: str = Field(example="johndoe")
    email: str = Field(example="johndoe@coldmail.com")
    password: str = Field(example="password123")


app = FastAPI()


@app.on_event("startup")
async def startup_db_client():
    await DataBase.connect(uri=os.getenv("MONGODB_URL"), db=os.getenv("MONGODB_DB"))


@app.on_event("shutdown")
async def shutdown_db_client():
    await DataBase.close()


@app.post("/users/", status_code=201)
async def create_user(user: UserModelRequest):
    new_user = await User.insert_one(**user.dict())
    return new_user.to_dict()


@app.post("/user/auth", status_code=201)
async def is_authenticated(username: str, password: str):
    user = await User.find_one({"username": username})
    if not user:
        raise HTTPException(status_code=404, detail="User not found")
    return user.verify_password(password)


@app.get("/users")
async def get_users():
    users = await User.find_many()
    if not users:
        raise HTTPException(status_code=404, detail="User not found")
    return [user.to_dict() for user in users]


@app.get("/users/{user_id}")
async def get_user(user_id: str):
    user = await User.find_one({"_id": user_id})
    if not user:
        raise HTTPException(status_code=404, detail="User not found")
    return user.to_dict()


@app.put("/users/{user_id}", status_code=200)
async def update_user(user_id: str, user_data: UserModelRequest):
    updated_user = await User.update_one({"_id": user_id}, user_data.dict())
    if not updated_user:
        raise HTTPException(status_code=404, detail="User not found")
    return updated_user.to_dict()


@app.delete("/users/{user_id}", status_code=204)
async def delete_user(user_id: str):
    user = await User.find_one({"_id": user_id})
    if not user:
        raise HTTPException(status_code=404, detail="User not found")
    await user.delete()
    return {"status": "User deleted successfully"}

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

motormongo-0.1.6.tar.gz (31.3 kB view hashes)

Uploaded Source

Built Distribution

motormongo-0.1.6-py3-none-any.whl (33.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page