Model evaluation without manual labels
Project description
MOVAL
A python package to evaluate model performance without the ground truth label.
Reference
@article{li2022estimating,
title={Estimating Model Performance under Domain Shifts with Class-Specific Confidence Scores},
author={Li, Zeju and Kamnitsas, Konstantinos and Islam, Mobarakol and Chen, Chen and Glocker, Ben},
journal={arXiv preprint arXiv:2207.09957},
year={2022}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
moval-0.1.0.tar.gz
(28.9 kB
view details)
Built Distribution
moval-0.1.0-py3-none-any.whl
(22.8 kB
view details)
File details
Details for the file moval-0.1.0.tar.gz
.
File metadata
- Download URL: moval-0.1.0.tar.gz
- Upload date:
- Size: 28.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ee098a358d073a26dd1f2a6f75fb311c25f10340f839224f6ea6b5b546e373a |
|
MD5 | b1222fc6b8ed0a08f7892792d3bac3c0 |
|
BLAKE2b-256 | 94b2e520cf58e869334d3d1854ec491111e74632f3a5662aa48c9d1cda6c96d8 |
Provenance
File details
Details for the file moval-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: moval-0.1.0-py3-none-any.whl
- Upload date:
- Size: 22.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd5a3edd7447454c74b1d45252a3191f163a2a1b24a25c9aed8f77c5a6046a72 |
|
MD5 | 95cf0e1436ecec7e4c95be748b80c1a8 |
|
BLAKE2b-256 | ebeb755681dd6d79faf57cfdb5029d2d781372781e8c8d92e797db4ed7751eda |