Skip to main content

Machine learning movie recommender

Project description

<h1 align="center">
<img src="media/logo.png" width="25%"><br/>Moviebox
</h1>

<h4 align="center">
🎥 Machine learning movie recommender
</h4>

<div align="center">
<a href="https://github.com/klauscfhq/moviebox">
<img src="media/header.png" alt="Moviebox" width="90%">
</a>
</div>

[![Build Status](https://travis-ci.org/klauscfhq/moviebox.svg?branch=master)](https://travis-ci.org/klauscfhq/moviebox) [![Python](https://img.shields.io/badge/python-2.7-brightgreen.svg)](https://pypi.org/project/moviebox/) [![Python](https://img.shields.io/badge/python-3.4-brightgreen.svg)](https://pypi.org/project/moviebox/) [![Code Style](https://img.shields.io/badge/code%20style-pep8-brightgreen.svg)](https://github.com/klauscfhq/moviebox) [![PyPi](https://img.shields.io/pypi/v/moviebox.svg)](https://pypi.org/project/moviebox/)

## Contents

- [Description](#description)
- [CLI](#cli)
- [Usage](#usage)
- [API](#api)
- [Development](#development)
- [Team](#team)
- [License](#license)

## Description

Moviebox is a content based machine learning recommending system build with the powers of [`tf-idf`](https://en.wikipedia.org/wiki/Tf%E2%80%93idf) and [`cosine similarities`](https://en.wikipedia.org/wiki/Cosine_similarity).

Initially, a natural number, that corresponds to the ID of a unique movie title, is accepted as input from the user. Through `tf-idf` the plot summaries of 5000 different movies that reside in the dataset, are analyzed and vectorized. Next, a number of movies is chosen as recommendations based on their `cosine similarity` with the vectorized input movie. Specifically, the cosine value of the angle between any two non-zero vectors, resulting from their inner product, is used as the primary measure of similarity. Thus, only movies whose story and meaning are as close as possible to the initial one, are displayed to the user as recommendations.

The [dataset](moviebox/dataset/movies.csv) in use is a random subset of the [Carnegie Mellon Movie Summary Corpus](http://www.cs.cmu.edu/~ark/movie$-data/), and it consists of `5000` movie titles along with their respective categories and plots.

The nature of the project is heavily educational.

## Install

```
pip install moviebox
```

**`Python 2.7+`** or **`Python 3.4+`** is required to install or build the code.

## CLI

```
$ moviebox --help

🎥 Machine learning movie recommender

Usage
$ moviebox [<options> ...]

Options
--help, -h Display help message
--search, -s Search movie by ID
--movie, -m <int> Input movie ID [Can be any integer 0-4999]
--plot, -p Display movie plot
--interactive, -i Display process info
--list, -l List available movie titles
--recommend, -r <int> Number of recommendations [Can be any integer 1-30]
--version, -v Display installed version

Examples
$ moviebox --help
$ moviebox --search
$ moviebox --movie 2874
$ moviebox -m 2874 --recommend 3
$ moviebox -m 2874 -r 3 --plot
$ moviebox -m 2874 -r 3 -p --interactive
```

## Usage

```python
from moviebox.recommender import recommender

movieID = 2874 # Movie ID of `Asterix & Obelix: God save Britannia`
recommendationsNumber = 3 # Get 3 movie recommendations
showPlots = True # Display the plot of each recommended movie
interactive = True # Display process info while running

# Generate the recommendations
recommender(
movieID=movieID,
recommendationsNumber=recommendationsNumber,
showPlots=showPlots,
interactive=interactive)
```

## API

### recommender`(movieID, recommendationsNumber, showPlots, interactive)`

**E.g.** `recommender(movieID=2874, recommendationsNumber=3, showPlots=True, interactive=True)`

#### `movieID`

- Type: `Integer`

- Default Value: `2874`

- Optional: `True`

Input movie ID. Any integer between `[0, 4999]` can be selected.

#### `recommendationsNumber`

- Type: `Integer`

- Default Value: `3`

- Optional: `True`

Number of movie recommendations to be generated. Any integer between `[1, 30]` can be selected.

#### `showPlots`

- Type: `Boolean`

- Default Value: `False`

- Optional: `True`

Display the plot summary of each recommended movie.

#### `interactive`

- Type: `Boolean`

- Default Value: `False`

- Optional: `True`

Display process-related information while running.

## Development

- [Clone](https://help.github.com/articles/cloning-a-repository/) this repository to your local machine
- Navigate to your clone `cd moviebox`
- Install the dependencies `fab install` or `pip install -r requirements.txt`
- Check for errors `fab test`
- Run the API `fab start`
- Build the package `fab dist`
- Cleanup compiled files `fab clean`

## Team

- Mario Sinani ([@mariocfhq](https://github.com/mariocfhq))
- Klaus Sinani ([@klauscfhq](https://github.com/klauscfhq))

## License

[MIT](https://github.com/klauscfhq/moviebox/blob/master/license.md)


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

moviebox-0.3.0.tar.gz (3.5 MB view details)

Uploaded Source

Built Distribution

moviebox-0.3.0-py2.py3-none-any.whl (3.6 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file moviebox-0.3.0.tar.gz.

File metadata

  • Download URL: moviebox-0.3.0.tar.gz
  • Upload date:
  • Size: 3.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for moviebox-0.3.0.tar.gz
Algorithm Hash digest
SHA256 7c75d28a20332a908bffee153c6f4aac36972832160ca9f6e3a825a11c4ab462
MD5 16e1030a7a8d550c149efcf76dca98ca
BLAKE2b-256 98b87a6f126f318a4bb675f31240ee0e894fe4485d0c65bb1104bf1e86830ffb

See more details on using hashes here.

File details

Details for the file moviebox-0.3.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for moviebox-0.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2f4bf74f4f2a4dcb679b805d70e47be1300be7523c278cdd7d1924e10b7e0c63
MD5 c88b42a8bd483c8007ee866806d08ab0
BLAKE2b-256 1a538ac4cf646356fa1ed35ac742e36b56058025f13ae5459b4487871dbf3a8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page