Skip to main content

mOWL: A machine learning library with ontologies

Project description

mOWL: Machine Learning Library with Ontologies

mOWL is a library that provides different machine learning methods in which ontologies are used as background knowledge. mOWL is developed mainly in Python, but we have integrated the functionalities of OWLAPI, which is written in Java, for which we use JPype to bind Python with the Java Virtual Machine (JVM).

Table of contents

Installation

Test PyPi (beta version)

pip install -i https://test.pypi.org/simple/ mowl-borg

From GitHub

Installation can be done with the following commands:

git clone https://github.com/bio-ontology-research-group/mowl.git

cd mowl

conda env create -f environment.yml
conda activate mowl

./build_jars.sh

The last line will generate the necessary jar files to bind Python with the code that runs in the JVM

Examples of use

Basic example

In this example we use the training data (which is an OWL ontology) from the built-in dataset PPIYeasSlimDataset to build a graph representation using the subClassOf axioms.

from mowl.datasets.ppi_yeast import PPIYeastSlimDataset
from mowl.graph.taxonomy.model import TaxonomyParser

dataset = PPIYeastSlimDataset()
parser = TaxonomyParser(dataset.ontology, bidirectional_taxonomy = True)
edges = parser.parse()

The projected edges is an edge list of a graph. One use of this may be to generate random walks:

from mowl.walking.deepwalk.model import DeepWalk
walker = DeepWalk(edges,
	              100, # number of walks
				  20, # length of each walk
				  0.2, # probability of restart
				  workers = 4, # number of usable CPUs
				  )

walker.walk()
walks = walker.walks

Ontology to graph

In the previous example we called the class TaxonomyParser to perform the graph projection. However, there are more ways to perform the projection. We include the following four:

Instead of instantianting each of them separately, there is the following factory method:

from mowl.graph.factory import parser_factory

parser = parser_factory("taxonomy_rels", dataset.ontology, bidirectional_taxonomy = True)

Now parser will be an instance of the TaxonomyWithRelsParser class. The string parameters for each method are listed above.

For the random walks method we have a similar factory method that can be found in mowl.walking.factory and is called walking_factory.

List of contributors

License

Documentation

Full documentation and API reference can be found in our ReadTheDocs website.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mowl-borg-0.0.25.tar.gz (61.8 MB view details)

Uploaded Source

Built Distribution

mowl_borg-0.0.25-py3-none-any.whl (61.8 MB view details)

Uploaded Python 3

File details

Details for the file mowl-borg-0.0.25.tar.gz.

File metadata

  • Download URL: mowl-borg-0.0.25.tar.gz
  • Upload date:
  • Size: 61.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for mowl-borg-0.0.25.tar.gz
Algorithm Hash digest
SHA256 036fe345818ea08655a0eccf4ff40479a6596f858d91e415d82257f3455b77bd
MD5 10e3c165495fe2f48869613888eee333
BLAKE2b-256 3344e642bb7fabbe2bd10221ed7bc64070f52d899f1cae3c2e95a9b954c40fd8

See more details on using hashes here.

File details

Details for the file mowl_borg-0.0.25-py3-none-any.whl.

File metadata

  • Download URL: mowl_borg-0.0.25-py3-none-any.whl
  • Upload date:
  • Size: 61.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for mowl_borg-0.0.25-py3-none-any.whl
Algorithm Hash digest
SHA256 4eb6139559ea5e8e3630f7f60604dd340d32f46ca7b86e4e1d2eba11777e73d4
MD5 042bb2615238ade1ef2db3c8c019801c
BLAKE2b-256 eacc6fbb77f03ac02f969d0829d10309e6ec9c845fa8b950c01f25a6c53fd186

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page