Data science tools from Moz
Project description
A grab bag of assorted Data science tools from Moz.
Currently includes:
- Utilities for training/evaluating machine learning models:
- Cross validation
- Evaluation metrics (AUC, F1, etc)
- Training models in parallel
- Ensemble model selection
- PCA
- A generic way to specify model inputs
- Some linear models:
- Linear Regression
- Logistic Regression
- GLM
Installing
pip install mozsci
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size mozsci-0.9.0-cp27-none-macosx_10_10_intel.whl (80.3 kB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size mozsci-0.9.0-py2.7-macosx-10.10-intel.egg (117.4 kB) | File type Egg | Python version 2.7 | Upload date | Hashes View |
Filename, size mozsci-0.9.0.tar.gz (34.2 kB) | File type Source | Python version None | Upload date | Hashes View |
Close
Hashes for mozsci-0.9.0-cp27-none-macosx_10_10_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec10e4ab5cc6d6feba9153db2b2cc3805a98020d163c7deb6f7b975459b5a427 |
|
MD5 | 7ac3b77586b1891491a29d04e6d3e43d |
|
BLAKE2-256 | 777ae0f3c739bda4f12803eab4eb309819f5acd67eeabc4e83fc34a0a43c9640 |
Close
Hashes for mozsci-0.9.0-py2.7-macosx-10.10-intel.egg
Algorithm | Hash digest | |
---|---|---|
SHA256 | 563c144ee86f9c5f3557a3f2795c15ba18e2fa0177c40896101d7877abe8a16b |
|
MD5 | 280224b5214d2e38d60d2d49faa66b13 |
|
BLAKE2-256 | 8edea152197cc4478a2d10ad4616aa5b3cd02d325e953506d42b8dbba6c36fd0 |