A version of the NIST-JARVIS ALIGNN optimized in terms of model performance and to some extent reliability, for large-scale deployments over the MPDD infrastructure by Phases Research Lab.
Project description
MPDD - ALIGNN Calculator
This tool is a modified version of the NIST-JARVIS ALIGNN
optimized in terms of model performance and to some extent reliability, for large-scale deployments over the MPDD
infrastructure by Phases Research Lab.
Critical Changes
Key modifications that were made here:
-
A set of models of interest has been selected and defined in
config.yaml
for consistency, readability, and easy tracking. These are the models which will be populating MPDD. -
Dependency optimizations for running models, skipping by default installation of several packages needed only for training and auxiliary tasks. Full set can still be installed by
pip install "mpdd-alignn[full]"
. -
The process of model fetching was far too slow using
pretrained.get_figshare_model()
; thus, we reimplemented it similar topySIPFENN
by multi-threading connection to Figshare viapysmartdl2
we maintain, and parallelize the process on per-model basis. Model download is now 7 times faster, fetching all 7 default models in 6.1 vs 41.4 seconds. -
Optimized what is included in the built package. Now, its package size is reduced 33.5 times, from 21.7MB to 0.65MB.
-
Streamlined operation, where we can get results for a directory of POSCARS for all default models in just 3 quick lines
from alignn import pretrained pretrained.download_default_models() result = pretrained.run_models_from_directory('example.SigmaPhase', mode='serial')
Which give us neat:
[{ 'ALIGNN-JARVIS Bulk Modulus [GPa]': 98.06883239746094, 'ALIGNN-JARVIS Exfoliation Energy [meV/atom]': 101.71208190917969, 'ALIGNN-JARVIS Formation Energy [eV/atom]': -1.1146986484527588, 'ALIGNN-JARVIS MBJ Bandgap [eV]': 0.5845542550086975, 'ALIGNN-JARVIS Shear Modulus [GPa]': 39.18968963623047, 'ALIGNN-MP Formation Energy [eV/atom]': -1.4002774953842163, 'ALIGNN-MP PBE Bandgap [eV]': 1.074204921722412, 'name': '9-Pb8O12.POSCAR' }, { 'ALIGNN-JARVIS Bulk Modulus [GPa]': 194.2947540283203, 'ALIGNN-JARVIS Exfoliation Energy [meV/atom]': 362.1310729980469, 'ALIGNN-JARVIS Formation Energy [eV/atom]': 0.010236039757728577, 'ALIGNN-JARVIS MBJ Bandgap [eV]': 0.0064897798001766205, 'ALIGNN-JARVIS Shear Modulus [GPa]': 85.74588775634766, 'ALIGNN-MP Formation Energy [eV/atom]': -0.018119990825653076, 'ALIGNN-MP PBE Bandgap [eV]': -0.00551827996969223, 'name': '19-Fe4Ni26.POSCAR' }, { 'ALIGNN-JARVIS Bulk Modulus [GPa]': 185.35687255859375, 'ALIGNN-JARVIS Exfoliation Energy [meV/atom]': 379.46417236328125, 'ALIGNN-JARVIS Formation Energy [eV/atom]': 0.10529126971960068, ...
ALIGNN Compatibility and Install
In general, we tried to retain full compatibility with the original ALIGNN
, so this should be a drop-in replacement. You have to simply:
pip install mpdd-alignn
or (as recommended) clone this repository and
pip install -e .
Contributions
Please direct all contributions to the ALIGNN repository. We will be synching our fork with them every once in a while and can do it quickly upon reasonable request.
The only contributions we will accept here are:
- Expanding the list of default models.
- Performance improvements to our section of the code.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mpdd_alignn-1.0.4.tar.gz
.
File metadata
- Download URL: mpdd_alignn-1.0.4.tar.gz
- Upload date:
- Size: 105.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7831cb9bb8b5d1b178fc7882d5764a183d59c3c95198ef6059318b6113943dad |
|
MD5 | ba8c5e093a67597efdf688c7b047663a |
|
BLAKE2b-256 | 958eaa407b5692c8821d5a580cbdbe1d4b1a514f28a0d2e0dbf9196cf1555f83 |
File details
Details for the file mpdd_alignn-1.0.4-py3-none-any.whl
.
File metadata
- Download URL: mpdd_alignn-1.0.4-py3-none-any.whl
- Upload date:
- Size: 122.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c3fd449995e47f4f1692c92754685e6b92e9dc86b18d9ee994377241e65ec44 |
|
MD5 | 8374e1c7ac6912d2445c39465cf166ab |
|
BLAKE2b-256 | 8cbb10c94090f674ed5c37b31a463fde097e6d3211bbfee6694149b369a44dfd |