Skip to main content

A version of the NIST-JARVIS ALIGNN optimized in terms of model performance and to some extent reliability, for large-scale deployments over the MPDD infrastructure by Phases Research Lab.

Project description

MPDD - ALIGNN Calculator

This tool is a modified version of the NIST-JARVIS ALIGNN optimized in terms of model performance and to some extent reliability, for large-scale deployments over the MPDD infrastructure by Phases Research Lab.

Critical Changes

Key modifications that were made here:

  • A set of models of interest has been selected and defined in config.yaml for consistency, readability, and easy tracking. These are the models which will be populating MPDD.

  • Dependency optimizations for running models, skipping by default installation of several packages needed only for training and auxiliary tasks. Full set can still be installed by pip install "mpdd-alignn[full]".

  • The process of model fetching was far too slow using pretrained.get_figshare_model(); thus, we reimplemented it similar to pySIPFENN by multi-threading connection to Figshare via pysmartdl2 we maintain, and parallelize the process on per-model basis. Model download is now 7 times faster, fetching all 7 default models in 6.1 vs 41.4 seconds.

  • Optimized what is included in the built package. Now, its package size is reduced 33.5 times, from 21.7MB to 0.65MB.

  • Streamlined operation, where we can get results for a directory of POSCARS for all default models in just 3 quick lines

    from alignn import pretrained
    pretrained.download_default_models()
    result = pretrained.run_models_from_directory('example.SigmaPhase', mode='serial')
    

    Which give us neat:

    [{
        'ALIGNN-JARVIS Bulk Modulus [GPa]': 98.06883239746094,
        'ALIGNN-JARVIS Exfoliation Energy [meV/atom]': 101.71208190917969,
        'ALIGNN-JARVIS Formation Energy [eV/atom]': -1.1146986484527588,
        'ALIGNN-JARVIS MBJ Bandgap [eV]': 0.5845542550086975,
        'ALIGNN-JARVIS Shear Modulus [GPa]': 39.18968963623047,
        'ALIGNN-MP Formation Energy [eV/atom]': -1.4002774953842163,
        'ALIGNN-MP PBE Bandgap [eV]': 1.074204921722412,
        'name': '9-Pb8O12.POSCAR'
    },
    {
        'ALIGNN-JARVIS Bulk Modulus [GPa]': 194.2947540283203,
        'ALIGNN-JARVIS Exfoliation Energy [meV/atom]': 362.1310729980469,
        'ALIGNN-JARVIS Formation Energy [eV/atom]': 0.010236039757728577,
        'ALIGNN-JARVIS MBJ Bandgap [eV]': 0.0064897798001766205,
        'ALIGNN-JARVIS Shear Modulus [GPa]': 85.74588775634766,
        'ALIGNN-MP Formation Energy [eV/atom]': -0.018119990825653076,
        'ALIGNN-MP PBE Bandgap [eV]': -0.00551827996969223,
        'name': '19-Fe4Ni26.POSCAR'
    },
    {
        'ALIGNN-JARVIS Bulk Modulus [GPa]': 185.35687255859375,
        'ALIGNN-JARVIS Exfoliation Energy [meV/atom]': 379.46417236328125,
        'ALIGNN-JARVIS Formation Energy [eV/atom]': 0.10529126971960068,
    ...
    

ALIGNN Compatibility and Install

In general, we tried to retain full compatibility with the original ALIGNN, so this should be a drop-in replacement. You have to simply:

pip install mpdd-alignn

or (as recommended) clone this repository and

pip install -e .

Contributions

Please direct all contributions to the ALIGNN repository. We will be synching our fork with them every once in a while and can do it quickly upon reasonable request.

The only contributions we will accept here are:

  • Expanding the list of default models.
  • Performance improvements to our section of the code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mpdd_alignn-1.0.4.tar.gz (105.3 kB view details)

Uploaded Source

Built Distribution

mpdd_alignn-1.0.4-py3-none-any.whl (122.7 kB view details)

Uploaded Python 3

File details

Details for the file mpdd_alignn-1.0.4.tar.gz.

File metadata

  • Download URL: mpdd_alignn-1.0.4.tar.gz
  • Upload date:
  • Size: 105.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for mpdd_alignn-1.0.4.tar.gz
Algorithm Hash digest
SHA256 7831cb9bb8b5d1b178fc7882d5764a183d59c3c95198ef6059318b6113943dad
MD5 ba8c5e093a67597efdf688c7b047663a
BLAKE2b-256 958eaa407b5692c8821d5a580cbdbe1d4b1a514f28a0d2e0dbf9196cf1555f83

See more details on using hashes here.

File details

Details for the file mpdd_alignn-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: mpdd_alignn-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 122.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for mpdd_alignn-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 0c3fd449995e47f4f1692c92754685e6b92e9dc86b18d9ee994377241e65ec44
MD5 8374e1c7ac6912d2445c39465cf166ab
BLAKE2b-256 8cbb10c94090f674ed5c37b31a463fde097e6d3211bbfee6694149b369a44dfd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page