Skip to main content

Interactive data cursors for Matplotlib

Project description

mpldatacursor
============
``mpldatacursor`` provides interactive "data cursors" (clickable annotation
boxes) for matplotlib.

Major Changes in v0.3
---------------------
Version 0.3 adds basic support for displaying the "z" values of contours,
``pcolor``, and ``pcolormesh`` as well as numerous bugfixes. Additionally, the
formatter function will now be passed a list of indicies (The ``ind`` kwarg) of
the items selected if the artist has "subitems" (e.g. points in a scatter plot,
etc).


Basic Usage
-----------
``mpldatacursor`` offers a few different styles of interaction through the
``datacursor`` function.

As an example, this displays the x, y coordinates of the selected artist in an
annotation box::

import matplotlib.pyplot as plt
import numpy as np
from mpldatacursor import datacursor

data = np.outer(range(10), range(1, 5))

fig, ax = plt.subplots()
lines = ax.plot(data)
ax.set_title('Click somewhere on a line')

datacursor(lines)

plt.show()

.. image:: http://joferkington.github.com/mpldatacursor/images/basic.png
:align: center
:target: https://github.com/joferkington/mpldatacursor/blob/master/examples/basic.py

If no artist or sequence of artists is specified, all manually plotted artists
in all axes in all figures will be activated. (This can be limited to only
certain axes by passing in an axes object or a sequence of axes to the ``axes``
kwarg.)

As an example (the output is identical to the first example)::

import matplotlib.pyplot as plt
import numpy as np
from mpldatacursor import datacursor

data = np.outer(range(10), range(1, 5))

plt.plot(data)
plt.title('Click somewhere on a line')

datacursor()

plt.show()

Controlling the Displayed Text
------------------------------
The displayed text can be controlled either by using the ``formatter`` kwarg,
which expects a function that accepts an arbitrary sequence of kwargs and
returns the string to be displayed. Often, it's convenient to pass in the
``format`` method of a template string (e.g.
``formatter="longitude:{x:.2f}\nlatitude{y:.2f}".format``).

As an example of using the ``formatter`` kwarg to display only the label of the
artist instead of the x, y coordinates::

import numpy as np
import matplotlib.pyplot as plt
from mpldatacursor import datacursor

x = np.linspace(0, 10, 100)

fig, ax = plt.subplots()
ax.set_title('Click on a line to display its label')

# Plot a series of lines with increasing slopes...
for i in range(1, 20):
ax.plot(x, i * x, label='$y = {}x$'.format(i))

# Use a DataCursor to interactively display the label for a selected line...
datacursor(formatter='{label}'.format)

plt.show()

.. image:: http://joferkington.github.com/mpldatacursor/images/show_artist_labels.png
:align: center
:target: https://github.com/joferkington/mpldatacursor/blob/master/examples/show_artist_labels.py

Working with Images
-------------------
``datacursor`` will also display the array value at the selected point in an
image. This example also demonstrates using the ``display="single"`` option to
display only one data cursor instead of one-per-axes.::

import matplotlib.pyplot as plt
import numpy as np
from mpldatacursor import datacursor

data = np.arange(100).reshape((10,10))

fig, axes = plt.subplots(ncols=2)
axes[0].imshow(data, interpolation='nearest', origin='lower')
axes[1].imshow(data, interpolation='nearest', origin='upper',
extent=[200, 300, 400, 500])
datacursor(display='single')

fig.suptitle('Click anywhere on the image')

plt.show()

.. image:: http://joferkington.github.com/mpldatacursor/images/image_example.png
:align: center
:target: https://github.com/joferkington/mpldatacursor/blob/master/examples/image_example.py

Draggable Boxes
---------------
If ``draggable=True`` is specified, the annotation box can be interactively
dragged to a new position after creation.

As an example (This also demonstrates using the ``display='multiple'`` kwarg)::

import matplotlib.pyplot as plt
import numpy as np
from mpldatacursor import datacursor

data = np.outer(range(10), range(1, 5))

fig, ax = plt.subplots()
ax.set_title('Try dragging the annotation boxes')
ax.plot(data)

datacursor(display='multiple', draggable=True)

plt.show()

.. image:: http://joferkington.github.com/mpldatacursor/images/draggable_example.png
:align: center
:target: https://github.com/joferkington/mpldatacursor/blob/master/examples/draggable_example.py

Further Customization
---------------------
Additional keyword arguments to ``datacursor`` are passed on to ``annotate``.
This allows one to control the appearance and location of the "popup box",
arrow, etc. As a basic example::

import matplotlib.pyplot as plt
import numpy as np
from mpldatacursor import datacursor

fig, axes = plt.subplots(ncols=2)

left_artist = axes[0].plot(range(11))
axes[0].set(title='No box, different position', aspect=1.0)

right_artist = axes[1].imshow(np.arange(100).reshape(10,10))
axes[1].set(title='Fancy white background')

# Make the text pop up "underneath" the line and remove the box...
dc1 = datacursor(left_artist, xytext=(15, -15), bbox=None)

# Make the box have a white background with a fancier connecting arrow
dc2 = datacursor(right_artist,
arrowprops=dict(arrowstyle='simple', fc='white', alpha=0.5),
bbox=dict(boxstyle='round,pad=0.3', fc='white', alpha=0.5))

plt.show()

.. image:: http://joferkington.github.com/mpldatacursor/images/change_popup_color.png
:align: center
:target: https://github.com/joferkington/mpldatacursor/blob/master/examples/change_popup_color.py

Highlighting Selected Lines
---------------------------
``HighlightingDataCursor`` highlights a ``Line2D`` artist in addition to
displaying the selected coordinates.::

import numpy as np
import matplotlib.pyplot as plt
from mpldatacursor import HighlightingDataCursor

x = np.linspace(0, 10, 100)

fig, ax = plt.subplots()

# Plot a series of lines with increasing slopes...
lines = []
for i in range(1, 20):
line, = ax.plot(x, i * x, label='$y = {}x$'.format(i))
lines.append(line)

HighlightingDataCursor(lines)

plt.show()

.. image:: http://joferkington.github.com/mpldatacursor/images/highlighting_example.png
:align: center
:target: https://github.com/joferkington/mpldatacursor/blob/master/examples/highlighting_example.py

Installation
------------
``mpldatacursor`` can be installed from PyPi using
``easy_install``/``pip``/etc. (e.g. ``pip install mpldatacursor``) or you may
download the source and install it directly with ``python setup.py install``.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for mpldatacursor, version 0.3
Filename, size File type Python version Upload date Hashes
Filename, size mpldatacursor-0.3.tar.gz (9.2 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page