A module that makes multiprocessing easy.
Project description
mplite
A light weight wrapper for pythons multiprocessing module that makes multiprocessing easy.
In case anyone is looking for a very easy way to use multiprocessing with args and kwargs, here is a neat wrapper as mplite:
The test is also the showcase:
1. get the imports
from mplite import TaskManager, Task
import time
2. Create the function that each cpu should work on individually.
def f(*args, **kwargs):
time.sleep(args[0])
return args[0]/kwargs['hello']
2.1. I also add a function that will fail to illustrate that the TaskManager doesn't crash...
def broken(*args, **kwargs):
raise NotImplementedError("this task must fail!")
3. create the main function you'd like to run everything from:
def main():
args = list(range(10)) * 5
start = time.time()
with TaskManager() as tm:
# add the first tasks
tasks = [Task(f, *(arg/10,), **{'hello': arg}) for arg in args]
print("an example of a tasks is available as string:\n\t", str(tasks[0]), '\n\t', repr(tasks[0]))
results = tm.execute(tasks) # this will contain results and tracebacks!
end = time.time()
print(f"did nothing for {end-start} seconds, producing {len(results)} results")
print(f"hereof {len([result for result in results if isinstance(result, str) ])} had errors.")
print(f"the rest where results: {[i for i in results if not isinstance(i,str)]}")
# add more tasks to the SAME pool of workers:
tasks = [Task(broken, *(i,)) for i in range(3)]
results = tm.execute(tasks)
print("More expected errors:")
for result in results:
print("expected -->", result)
if __name__ == "__main__":
main()
Expected outputs
an example of a tasks is available as string:
Task(f=f, *(0.0,), **{'hello': 0})
Task(f=f, *(0.0,), **{'hello': 0})
0%| | 0/50 [00:00<?, ?tasks/s]
2%|▏ | 1/50 [00:00<00:07, 6.96tasks/s]
4%|▍ | 2/50 [00:00<00:06, 7.75tasks/s]
6%|▌ | 3/50 [00:00<00:05, 8.15tasks/s]
14%|█▍ | 7/50 [00:00<00:03, 14.16tasks/s]
18%|█▊ | 9/50 [00:00<00:02, 14.36tasks/s]
24%|██▍ | 12/50 [00:00<00:02, 14.13tasks/s]
32%|███▏ | 16/50 [00:01<00:01, 17.34tasks/s]
38%|███▊ | 19/50 [00:01<00:01, 18.03tasks/s]
42%|████▏ | 21/50 [00:01<00:01, 16.66tasks/s]
46%|████▌ | 23/50 [00:01<00:01, 15.06tasks/s]
52%|█████▏ | 26/50 [00:01<00:01, 17.60tasks/s]
56%|█████▌ | 28/50 [00:01<00:01, 16.86tasks/s]
62%|██████▏ | 31/50 [00:02<00:01, 16.72tasks/s]
66%|██████▌ | 33/50 [00:02<00:00, 17.37tasks/s]
70%|███████ | 35/50 [00:02<00:00, 17.72tasks/s]
74%|███████▍ | 37/50 [00:02<00:00, 17.52tasks/s]
80%|████████ | 40/50 [00:02<00:00, 19.88tasks/s]
86%|████████▌ | 43/50 [00:02<00:00, 15.19tasks/s]
90%|█████████ | 45/50 [00:02<00:00, 13.69tasks/s]
94%|█████████▍| 47/50 [00:03<00:00, 14.46tasks/s]
98%|█████████▊| 49/50 [00:03<00:00, 10.98tasks/s]
100%|██████████| 50/50 [00:03<00:00, 14.40tasks/s]
did nothing for 3.601374387741089 seconds, producing 50 results
hereof 5 had errors.
the rest where results: [0.1, 0.1, 0.0999..., 0.1, 0.1, 0.1, 0.1, 0.0999..., 0.0999..., 0.0999..., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.0999..., 0.0999..., 0.0999..., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.0999..., 0.0999..., 0.0999..., 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.0999..., 0.0999..., 0.0999..., 0.1, 0.1, 0.1, 0.1, 0.0999..., 0.0999..., 0.1, 0.1]
0%| | 0/3 [00:00<?, ?tasks/s]
100%|██████████| 3/3 [00:00<00:00, 80.66tasks/s]
More expected errors:
expected --> Traceback (most recent call last):
File "d:\github\mplite\mplite\__init__.py", line 97, in execute
return self.f(*self.args,**self.kwargs)
File "d:\github\mplite\tests\test_basics.py", line 36, in broken
raise NotImplementedError("this task must fail!")
NotImplementedError: this task must fail!
expected --> Traceback (most recent call last):
File "d:\github\mplite\mplite\__init__.py", line 97, in execute
return self.f(*self.args,**self.kwargs)
File "d:\github\mplite\tests\test_basics.py", line 36, in broken
raise NotImplementedError("this task must fail!")
NotImplementedError: this task must fail!
expected --> Traceback (most recent call last):
File "d:\github\mplite\mplite\__init__.py", line 97, in execute
return self.f(*self.args,**self.kwargs)
File "d:\github\mplite\tests\test_basics.py", line 36, in broken
raise NotImplementedError("this task must fail!")
NotImplementedError: this task must fail!
Note that tasks can't crash! In case of exceptions during task execution, the traceback is captured and the compute core continues to execute the next task.
How to test worker functions
Also, if you want to check that the inputs to the task
are formed correctly, you can do the check from the interpreter,
by calling .execute()
on the task:
>>> t = Task(f, *(1,2,3), **{"this":42})
>>> t.execute()
How to handle incremental tasks
From version 1.1.0 it is possible to add tasks incrementally.
Let's say I'd like to solve the pyramid task where I add up all numbers
1+2 3+4 5+6 7+8 9+10
= = = = =
3 + 7 11 + 15 19
= = =
10 26 + 19
= =
10 + 45
=
55
This requires that I:
- create a queue with 1,2,3,...,10
- add tasks for the numbers to be added pairwise
- receive the result
- when I have a pair of numbers submit them AGAIN.
Here is an example of what the code can look like:
def test_incremental_workload():
with TaskManager() as tm:
# 1. create initial workload
checksum = 55
for a in range(1,10,2):
t = Task(adder, a, a+1)
print(t)
tm.submit(t)
# 2. create incremental workload
a,b = None,None
while True:
result = tm.take()
if result is None:
if tm.open_tasks == 0:
break
else:
continue
if a is None:
a = result
else:
b = result
if a and b:
t = Task(adder, a,b)
print(t)
tm.submit(t)
a,b = None,None
print(a,b,flush=True)
assert a == checksum or b == checksum,(a,b,checksum)
Output:
Task(f=adder, *(1, 2), **{})
Task(f=adder, *(3, 4), **{})
Task(f=adder, *(5, 6), **{})
Task(f=adder, *(7, 8), **{})
Task(f=adder, *(9, 10), **{})
Task(f=adder, *(3, 7), **{})
Task(f=adder, *(11, 15), **{})
Task(f=adder, *(19, 10), **{})
Task(f=adder, *(26, 29), **{})
55 None
Use mplite wisely. Executing each tasks has a certain overhead associated with it. The fewer the number of tasks and the heavier (computationally) each of them the better.
Example with number of calls with a number of iterations in the call:
import multiprocessing
import time
from mplite import TaskManager, Task
def run_calcs_calls(mp_enabled=True, rng=50_000_000, calls=20, cpus=1):
start = time.perf_counter()
L = []
if mp_enabled:
with TaskManager(cpu_count=cpus) as tm:
tasks = []
for call in range(1, calls+1):
tasks.append(Task(fun, *(call, rng)))
L = tm.execute(tasks)
else:
for call in range(1, calls+1):
res = fun(call, rng)
L.append(res)
task_times = [tm for res, tm in L]
cpu_count = cpus if mp_enabled else 1
cpu_task_time = sum(task_times)/cpu_count
if mp_enabled:
print('mplite - enabled')
else:
print('mplite - disabled')
print('cpu_count: ', cpu_count)
print(f'avg. time taken per cpu: ', cpu_task_time)
end = time.perf_counter()
total_time = end - start
print('total time taken: ', total_time)
print()
return total_time, cpu_task_time, cpu_count
def fun(call_id, rng):
# burn some time iterating thru
start = time.perf_counter()
t = 0
for i in range(rng):
t = i/call_id
end = time.perf_counter()
return t, end - start
def test_mplite_performance():
# change calls and range to see the knock on effect on performance
print('========CALLS TEST===========')
for cpus in [1, multiprocessing.cpu_count()]:
for ix, (calls, rng) in enumerate([(10, 50_000_000), (2000, 50)], start=1):
print('calls: ', calls, ', range: ', rng)
total_time_mp_e, cpu_task_time_mp_e, cpu_count_mp_e = run_calcs_calls(True, rng, calls, cpus)
total_time_mp_d, cpu_task_time_mp_d, cpu_count_mp_d = run_calcs_calls(False, rng, calls, cpus)
artifacts = [cpus, calls, rng, total_time_mp_e, cpu_task_time_mp_e, cpu_count_mp_e, total_time_mp_d, cpu_task_time_mp_d, cpu_count_mp_d]
if cpu_count_mp_e > cpu_count_mp_d:
if ix == 1: # assert mplite is faster for less calls and heavier process
assert total_time_mp_e < total_time_mp_d, artifacts
else:
assert True
Output:
========CALLS TEST===========
calls: 10 , range: 50000000
mplite - enabled
cpu_count: 1
avg. time taken per cpu: 18.5264333
total time taken: 18.8809622
mplite - disabled
cpu_count: 1
avg. time taken per cpu: 18.912037
total time taken: 18.9126078
calls: 2000 , range: 50
mplite - enabled
cpu_count: 1
avg. time taken per cpu: 0.005216900000000357
total time taken: 0.490177800000005
mplite - disabled
cpu_count: 1
avg. time taken per cpu: 0.003248700000142435
total time taken: 0.003983699999999146
calls: 10 , range: 50000000
mplite - enabled
cpu_count: 12
avg. time taken per cpu: 3.410191883333333
total time taken: 4.978601699999999
mplite - disabled
cpu_count: 1
avg. time taken per cpu: 19.312383399999995
total time taken: 19.312710600000003
calls: 2000 , range: 50
mplite - enabled
cpu_count: 12
avg. time taken per cpu: 0.0005722500000000056
total time taken: 0.9079466999999966
mplite - disabled
cpu_count: 1
avg. time taken per cpu: 0.0038669999999427773
total time taken: 0.004872100000000046
Example with sleep time in each adder function:
import multiprocessing
import time
from mplite import TaskManager, Task
def run_calcs_sleep(mp_enabled, sleep=2, cpus=1):
args = list(range(20))
start = time.perf_counter()
prev_mem = 0
L = []
if mp_enabled:
with TaskManager(cpus) as tm:
tasks = []
for arg in args:
tasks.append(Task(adder, *(prev_mem, arg, sleep)))
prev_mem = arg
L = tm.execute(tasks)
else:
for arg in args:
res = adder(prev_mem, arg, sleep)
L.append(res)
prev_mem = arg
end = time.perf_counter()
cpu_count = cpus if mp_enabled else 1
if mp_enabled:
print('mplite - enabled')
else:
print('mplite - disabled')
total_time = end - start
print('cpu_count: ', cpu_count)
print('total time taken: ', total_time)
print()
return total_time, cpu_count
def adder(a, b, sleep):
time.sleep(sleep)
return a+b
def test_mplite_performance():
# change sleep times to see the knock on effect on performance
print('========SLEEP TEST===========')
for cpus in [1, multiprocessing.cpu_count()]:
for ix, sleep in enumerate([2, 0.02, 0.01], start=1):
print('sleep timer value: ', sleep)
total_time_mp_e, cpu_count_mp_e = run_calcs_sleep(True, sleep, cpus)
total_time_mp_d, cpu_count_mp_d = run_calcs_sleep(False, sleep, cpus)
artifacts = [cpus, total_time_mp_e, cpu_count_mp_e, total_time_mp_d, cpu_count_mp_d]
if cpu_count_mp_e > cpu_count_mp_d:
if ix == 1: # assert mplite is faster for longer sleep
assert total_time_mp_e < total_time_mp_d, artifacts
else:
assert True
Output:
========SLEEP TEST===========
sleep timer value: 2
mplite - enabled
cpu_count: 1
total time taken: 40.4222287
mplite - disabled
cpu_count: 1
total time taken: 40.006973200000004
sleep timer value: 0.02
mplite - enabled
cpu_count: 1
total time taken: 0.7628226999999868
mplite - disabled
cpu_count: 1
total time taken: 0.4116598999999894
sleep timer value: 0.01
mplite - enabled
cpu_count: 1
total time taken: 0.5629501999999889
mplite - disabled
cpu_count: 1
total time taken: 0.21054430000000934
sleep timer value: 2
mplite - enabled
cpu_count: 12
total time taken: 4.821827799999994
mplite - disabled
cpu_count: 1
total time taken: 40.011519899999996
sleep timer value: 0.02
mplite - enabled
cpu_count: 12
total time taken: 0.713870500000013
mplite - disabled
cpu_count: 1
total time taken: 0.41133019999998055
sleep timer value: 0.01
mplite - enabled
cpu_count: 12
total time taken: 0.6938743000000045
Ran 1 test in 192.739s
mplite - disabled
cpu_count: 1
total time taken: 0.20631170000001475
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file mplite-1.3.1-py3-none-any.whl
.
File metadata
- Download URL: mplite-1.3.1-py3-none-any.whl
- Upload date:
- Size: 14.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 15a53adcfab3e19693ef7bf918edeb48f7dea8ae7a16a7ca8664e2f5e88a8529 |
|
MD5 | e5b9e9dbb36f22724990ea1f0ef1407c |
|
BLAKE2b-256 | c8da17e7148a10cff08affa4bd60c4019ec39f912f1f8baaee4c0724b0d1bd56 |